欢迎来到天天文库
浏览记录
ID:33731936
大小:2.16 MB
页数:44页
时间:2019-02-28
《与pde数值解相关的线性代数方程组求解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、目录怪l引言....................................................................……,............……,.....................·...........……,..…1夸2线性代数方程组求解的直接法...........................................................................................……3犯.1线代数方程组扰动理论—条件数..................……,.....……,...........
2、........................……4犯.2GausS消去法................................................···························································……13夸2.1.1Gauss顺序消去法计算公式.........................................................................……13壮.2.2Gauss消去法的存储量与计算量...............................
3、..................................……13牡.2.3列主元Gauss消去法的算法..…,................................................................……巧犯.2.4列主元Gauss消去法浮点舍入误差分析...................……,....……甲..............……17犯2.5列主元Gauss消去法解一个Poisson问题................……,.........................……22夸2.3对称正定矩阵的平方根法.........
4、............................................................................……23牡.3.1cholesky(乔莱斯基)分解…,...................................……,...............................……2392.4解三对角方程组的追赶法二,.........·········································································……25犯:41追赶法能进行的充分条件....
5、......................................................................……25犯.4.2追赶法的过程..……,.…,...................··..······································,··················……2692.4.3追赶法的数值算例......……,二,..............······················································一27犯.5直接法小结......……,........
6、.......................……,..························································……27那线性代数方程组求解的基本迭代法.............................................................................……,二28朴.1迭代格式..........……,.....................................................................··........············
7、·····……29妇.2收敛性分析.....……,....................................................……,.·····································……29妇,3Jacobi迭代法................................................·.····························
此文档下载收益归作者所有