微积分习题课精品ppt课件

微积分习题课精品ppt课件

ID:33713127

大小:980.01 KB

页数:24页

时间:2018-05-24

微积分习题课精品ppt课件_第1页
微积分习题课精品ppt课件_第2页
微积分习题课精品ppt课件_第3页
微积分习题课精品ppt课件_第4页
微积分习题课精品ppt课件_第5页
资源描述:

《微积分习题课精品ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二、导数应用习题课一、微分中值定理及其应用中值定理及导数的应用第三章三、考研试题选讲拉格朗日中值定理一、微分中值定理及其应用1.微分中值定理及其相互关系罗尔定理泰勒中值定理柯西中值定理2.微分中值定理的主要应用(1)研究函数或导数的性态(2)证明恒等式或不等式(3)证明有关中值问题的结论3.有关中值问题的解题方法一般解题方法:证明含一个中值的等式或根的存在,多用(2)若结论中涉及含中值的两个不同函数,可考虑用(3)若结论中含两个或两个以上的中值,必须可用原函数法找辅助函数.罗尔定理,柯西中值定理.多次应用中值定理.(5)若结论为不等式,要注意适当放大或缩小的技巧.利用设辅助函数.逆向思维

2、,(4)若已知条件中含高阶导数,多考虑用,泰勒公式有时也可考虑对导数用中值定理.例1设函数在内可导,且证明在内有界.再取异于的点对为端点的区间上用拉氏中值定理,得(定数)可见对任意即得所证.证取点例2设在内可导,且证明至少存在一点使上连续,在设辅助函数显然在[0,1]上满足罗尔定理条件,故至使即有少存在一点证问题转化为证例3设实数满足下述等式证明方程在(0,1)内至少有一个实根.证令则可设且由罗尔定理知存在一点使即例4设函数在上二阶可导,且证明证由泰勒公式得两式相减得二、导数应用1.研究函数的性态:增减,极值,凹凸,拐点,渐近线,曲率2.解决最值问题目标函数的建立与简化最值的判别问题3.

3、其他应用:求未定式极限;几何应用;相关变化率;证明不等式;研究方程实根等.的连续性及导函数例5填空题(1)设函数其导数图形如图所示,单调减区间为;极小值点为;极大值点为.提示:的正负作f(x)的示意图.单调增区间为;.在区间上是凸弧;拐点为提示:的正负作f(x)的示意图.形在区间上是凹弧;则函数f(x)的图(2)设函数的图形如图所示,例6证明在上单调增加.证令在[x,x+1]上利用拉氏中值定理,故当x>0时,从而在上单调增.得例7求数列的最大项.证设用对数求导法得令得因为在只有唯一的极大值点因此在处也取最大值.又因中的最大项.极大值列表判别:例8证明证设,则故时,单调增加,从而即思考:证

4、明时,如何设辅助函数更好?提示:例9证只要证利用一阶泰勒公式,得故原不等式成立.例10求解法1利用中值定理求极限原式解法2利用泰勒公式令则原式解法3利用洛必达法则原式三、考研试题选讲1.设函数上具有二阶导数,且满足证明序列发散.证故序列发散.(2007考研)2.已知函数内可导,且证(1)令故存在使即(2005考研)内可导,且(2)根据拉格朗日中值定理,存在使2.已知函数阶导数,且存在相等的最大值,并满足3.设函数证据泰勒定理,存在使由此得即有(2007考研)情形1.则有内具有二阶导数,且存在相等的最大值,并满足情形2.因此据零点定理,存在即有则有3.设函数应用罗尔定理得内具有二4.设函数

5、f(x)在[0,3]上连续,在(0,3)内可导,且分析:所给条件可写为(2003考研)试证必存在想到找一点c,使证所以在[0,2]上连续,且在[0,2]上有最大值M与最小值m,故由介值定理,至少存在一点由罗尔定理知,必存在因f(x)在[0,3]上连续,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。