欢迎来到天天文库
浏览记录
ID:33659033
大小:145.50 KB
页数:8页
时间:2019-02-28
《midas几何非线性理论知识》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、当结构的变形相对杆件长度已不能忽略时,为了在结构变形后的形状上建立平衡,并考虑初始缺陷对结构屈曲承载力的影响,必须对结构进行基于大挠度理论的非线性屈曲分析。在midas中可以这样处理:对于索结构或张悬梁结构中,定义的只受拉索单元并不能进行特征值分析,因为其只能定义在几何非线性分析中。如要进行特征值分析,那么要将只受拉索单元转换为只受拉桁架单元。先对该结构进行几何非线性,得出自重作用下的初始索力,然后将索单元定义为只受拉桁架单元,将计算所得的索力按初始荷载加到单元中:荷载->初始荷载->小位移->初始单元内力加入张力。1、问:在MIDAS中如何计算自重作用下活荷载的稳
2、定系数(屈曲分析安全系数)?答:稳定分析又叫屈曲分析,所谓的荷载安全系数(临界荷载系数)均是对应于某种荷载工况或荷载组合的。例如:当有自重W和集中活荷载P作用时,屈曲分析结果临界荷载系数为10的话,表示在10*(W+P)大小的荷载作用下结构可能发生屈曲。但这也许并不是我们想要的结果。我们想知道的是在自重(或自重+二期恒载)存在的情况下,多大的活荷载作用下会发生失稳,即想知道W+Scale*P中的Scale值。我们推荐下列反复计算的方法。步骤一:先按W+P计算屈曲分析,如果得到临街荷载系数S1。步骤二:按W+S1*P计算屈曲,得临界荷载系数S2。步骤二:按W+S1*S
3、2*P计算屈曲,得临界荷载系数S3。重复上述步骤,直到临街荷载系数接近于1.0,此时的S1*S2*S3*Sn即为活荷载的最终临界荷载系数。(参见下图)midas官方网站的说话,供大家参考:考虑几何非线性同时进行稳定分析可以实现。方法如下:1、将进行稳定分析所用荷载定义在一个荷载工况下;2、定义非线性分析控制,选择几何非线性,在非线性分析荷载工况中添加此荷载工况,并对其定义加载步骤;3、分析;4、查看结果中的阶段步骤时程图表,查找变形发生突变的位置点,及加载系数,即可推知发生失稳的极限荷载。另外关于如何在屈曲分析中考虑P-delta效应的问题,因为P-delta效应仅
4、修正结构的初始刚度,因此可以通过定义结构的初始几何刚度的方法来实现。如可以将考虑P-delta效应的荷载工况在荷载〉初始荷载〉小位移〉初始内力组合中,然后进行非线性分析即可。MIDAS/Civil关于几何非线性及材料非线性模拟 几何非线性屈曲分析建议:1. 非线性的特点之一就是不能将荷载效应线性累加,所以在确定了用什么荷载做屈曲分析后,要做的是将这些荷载放到一个荷载工况上。例如考虑恒载+活载作用下的屈曲,需要将恒载及活载定义在同一工况名称下来进行分析2. 设置几何非线性分析的选项。在分析>非线性分析选项中选择几何非线性分析,选择位移控制法。选择
5、要控制位移的节点,输入一个相对较大的值。3. 做分析运行。在结果里有个阶段/步骤时程图表,在那里查看荷载-位移关系曲线,从曲线上判断屈曲点,查看屈曲点处的荷载系数,这个荷载系数就可以视为稳定系数了。注意:分析完屈曲分析后,可以找到对应的可变荷载的系数,在求出的屈曲荷载(包含不变+可变)的作用下进行下面的分析1. 先做静力分析,查看位移。找到屈曲分析使用的荷载作用下的位移最大点的位移最大方向,例如查看此模型弯矩作用下的位移最大值所发生的位置,得知6号节点发生了Y向位移最大值。2. 在几何非线性分析控制(位移法)中将这个点和位移
6、方向作为控制点和控制方向。3. 将非线性分析前几个步骤的步长设置可稍微长一些,后面间隔稍微短一些。这样比较容易收敛。查看弯矩作用下屈曲系数如下为-25.69. 对于sap2000分析教程提到的两铰拱经过midas与sap2000V11对比分析,结果一致。可以作为参考只用,当然一般都需要考虑材料非线性进去的。用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题:A. 整个结构的稳定性B. 构成结构的单个杆件的稳定性C. 单个杆件里的
7、局部稳定(如其中的板件的稳定)A 整个结构的稳定性: 1.在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B 构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。C单个杆件里的局部稳定
此文档下载收益归作者所有