欢迎来到天天文库
浏览记录
ID:33537018
大小:54.89 KB
页数:4页
时间:2019-02-26
《学生心理学论文范文-探讨例谈数学创新思维训练的心理创设word版下载》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、学生心理学论文范文:探讨例谈数学创新思维训练的心理创设word版下载导读:本论文是一篇关于例谈数学创新思维训练的心理创设的优秀论文范文,对正在写有关于学生论文的写作者有一定的参考和指导作用,论文片段:新理念下的课堂教学倡导以学主为中心,让学生在动手实践、自主探索、合作交流的过程中,培养学牛的创新意识和创新能力.在这一过程中学生的心理状况直接影响到对学生进行创新思维训练的效果,下面笔者结合数学教学的实例,谈谈对数学创新思维训练的心理创设的体会.一、悦纳心理是进行数学创新思维训练的前提教师要用爱心为学牛•创设一个民主、宽松、和谐的学习氛围,真正地从神
2、圣的讲坛走下来,做学生的知心朋友,成为学生学习的合作者、参与者、引导者;学生从心里悦纳教师,悦纳自己,放下自己的思想包袱,感觉身心愉快,乐于接受外来信息,主动地参与学习的过程,激活学生创新思维的灵感.在学习比较线段大小时,教师提出:“今天请你们一起来和老师比比身高,你们愿意吗?”这样很快与学生拉近距离,为心灵的交流打下基础.接着又提出:“谁的身体要高一些,你是怎么知道的?”学生甲说:“老师的身高要高,我是通过目测得到的,教师明显比我高”・学生乙说:“老师的身高要高,我是通过测量知道的,我有168厘米,老师有170厘米.”学生丙说:“我的身高要高,
3、我和老师的身高差不多,但在一次活动时,我和您站在一起进行比较,我才知道我比老师高一点•”学生丁说:“老师的身高要高,老师上课站在黑板旁时,我记下最高点的位置,下课后,我站到黑板旁发现没有到达老师的最高点・”……这种知心式地交流,学生没有压力,才会放开思维的闸门.老师接着提出:“你能总结一下策略吗?”学生在这种愉快地交流中总结出结论:一是目测,通过观察发现;二是工具测量,直接量出身高的具体的数量,三是利用参照物,既可以把老师当做参照物,直接地进行比较,也可以利用其他物体当做参照物,间接地进行比较.学乞在讨论交流中,相互补充,相互提示,激活学生的思维
4、.老师再提出:“如果把你的身高用线段AB表示,把老师的身高用线段CD表示,那么你会比较线段的大小吗?说给老师听听•”老师用亲切的语言营造了一个和谐的氛围,让学生在快乐中寻找到答案.学生表现为思维灵活,为进行数学创新思维训练作好了准备.二、好奇心理是进行数学创新思维训练的基础学生的好奇心来自于学生活动前,发展于学生活动中,而且将支配、调节学生以后的活动.在数学学习过程中,教师应有意识地让学生去重复人类探索知识的过程,让学生在动手操作、亲自实验中,发现理由、探索规律,满足学生的好奇心,激发学生学习数学的兴趣,为进行数学创新思维的训练开辟通道.在学习圆
5、周角定理时,教师要求学生画出一个圆,任意确定两个点,标出该段弧,作出该弧所对的圆周角、圆心角,再量一量角的大小.让学生重复几次,学生在实际操作中,能迅速集中注意力,消除紧张的心理.从而学生有了感性认识,为上升为理性认识做好了准备,同时让学生产生这样做究竟有什么作用的想法.这时教师提出:“这两个角有什么联系?你发现了什么?”先独立深思,再小组交流,从而得到圆周角定理.让学牛•认识到牛活中到处都是有规律的,只要我们善于动手、观察、深思,就会发现.但为什么会有这样的等量关系?教师再提出:“圆周角的两边与该弧所对的弦组成一个三角形与圆心的位置关系有几种?
6、”学生通过画图观察、交流,找到三种位置关系:一是圆心在三角形内,二是圆心在三角形外,还有一种特殊的是圆心在三角形一边上,从而引入圆周角定理的证明.学牛在教师的引导下亲自重复人类探索知识的过程,寻找到己知规律,从而对学生进行创新思维训练,为寻找到未知规律打下基础.三、成功心理是进行数学创新思维训练的动力教师对不同的学生提出不同的要求,制定不同的目标,且为学生提供展示自我的机会,让他们看到天天有小进步,月月有大进步,让学生在成功中体验到快乐、增添学习的自信心,为创新思维的训练提供源源不断的动力.学生有了自信心,就会主动地参与学习过程,勇于克服困难,创
7、新的意识就会不断涌现,创新的能力就会不断提高.在学习圆与直线的位置关系时,教师提出:“先画岀一个圆,把直尺的一边看做一条直线,移动直尺,从交点的情况上看,你会发现有几种情况?”学生人人都会动手,就让学习困难的学生演示过程,为他们提供表现自我的机会,并给予适当的鼓励,让学生增添战胜困难的勇气.探索直线与圆的位置和圆心到直线的距离、圆的半径之间有什么关系时,大部分学生通过画图、测量、比较等策略找到了答案,为基础中等的学生提供机会,调动他们的积极性,使学生学习在良好的氛围屮,相互推动,共同提高.应用直线与圆的位置关系的知识解决实际理由时,如台风是一种自
8、然灾害,据气象观察,在距离城市A的正南方180千米海面B处有一台风中心,其中心最大的风力为12级,每远离20千米风力就减弱一级,该台风中
此文档下载收益归作者所有