西城区学习探究诊断_第二十八章__锐角三角函数

西城区学习探究诊断_第二十八章__锐角三角函数

ID:33476590

大小:1.04 MB

页数:29页

时间:2019-02-26

西城区学习探究诊断_第二十八章__锐角三角函数_第1页
西城区学习探究诊断_第二十八章__锐角三角函数_第2页
西城区学习探究诊断_第二十八章__锐角三角函数_第3页
西城区学习探究诊断_第二十八章__锐角三角函数_第4页
西城区学习探究诊断_第二十八章__锐角三角函数_第5页
资源描述:

《西城区学习探究诊断_第二十八章__锐角三角函数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第二十八章锐角三角函数1锐角三角函数定义一、填空题1.如图所示,B、B′是∠MAN的AN边上的任意两点,BC⊥AM于C点,B′C′⊥AM于C′点,则△B'AC′∽______,从而,又可得①______,即在Rt△ABC中(∠C=90°),当∠A确定时,它的______与______的比是一个______值;②______,即在Rt△ABC中(∠C=90°),当∠A确定时,它的______与______的比也是一个______;③______,即在Rt△ABC中(∠C=90°),当∠A确定时,它的_

2、_____与______的比还是一个______.第1题图2.如图所示,在Rt△ABC中,∠C=90°.第2题图①=______,=______;②=______,=______;③=______,=______.3.因为对于锐角a的每一个确定的值,sina、cosa、tana分别都有____________与它______,所以sina、cosa、tana都是____________.又称为a的____________.4.在Rt△ABC中,∠C=90°,若a=9,b=12,则c=______,s

3、inA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.5.在Rt△ABC中,∠C=90°,若a=1,b=3,则c=______,sinA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.6.在Rt△ABC中,∠B=90°,若a=16,c=30,则b=______,sinA=______,cosA=______,tanA=____

4、__,sinC=______,cosC=______,tanC=______.7.在Rt△ABC中,∠C=90°,若∠A=30°,则∠B=______,sinA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.二、解答题8.已知:如图,Rt△TNM中,∠TMN=90°,MR⊥TN于R点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.9.已知Rt△ABC中,求AC、AB和cosB.综合、运用

5、、诊断10.已知:如图,Rt△ABC中,∠C=90°.D是AC边上一点,DE⊥AB于E点.DE∶AE=1∶2.求:sinB、cosB、tanB.11.已知:如图,⊙O的半径OA=16cm,OC⊥AB于C点,求:AB及OC的长.12.已知:⊙O中,OC⊥AB于C点,AB=16cm,(1)求⊙O的半径OA的长及弦心距OC;(2)求cos∠AOC及tan∠AOC.13.已知:如图,△ABC中,AC=12cm,AB=16cm,(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.14.已知:

6、如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sinB.拓展、探究、思考15.已知:如图,Rt△ABC中,∠C=90°,按要求填空:(1)∴______;(2)∴b=______,c=______;(3)∴a=______,b=______;(4)∴______,______;(5)∴______,______;(6)∵3,∴______,______.16.已知:如图,在直角坐标系xOy中,射线OM为第一象限中的一条射线,A点的坐标为(1,0),以原点O为圆心,OA长为半径画弧,交

7、y轴于B点,交OM于P点,作CA⊥x轴交OM于C点.设∠XOM=a.求:P点和C点的坐标.(用a的三角函数表示)17.已知:如图,△ABC中,∠B=30°,P为AB边上一点,PD⊥BC于D.(1)当BP∶PA=2∶1时,求sin∠1、cos∠1、tan∠1;(2)当BP∶PA=1∶2时,求sin∠1、cos∠1、tan∠1.测试2锐角三角函数学习要求1.掌握特殊角(30°,45°,60°)的正弦、余弦、正切三角函数值,会利用计算器求一个锐角的三角函数值以及由三角函数值求相应的锐角.2.初步了解锐角三

8、角函数的一些性质.课堂学习检测一、填空题1.填表.锐角a30°45°60°sinacosatana二、解答题2.求下列各式的值.(1)(2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)3.求适合下列条件的锐角a.(1)(2)(3)(4)4.用计算器求三角函数值(精确到0.001).(1)sin23°=______;(2)tan54°53′40″=______.5.用计算器求锐角a(精确到

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。