欢迎来到天天文库
浏览记录
ID:33416983
大小:95.47 KB
页数:3页
时间:2019-02-25
《153分式方程(第1课时)教案(新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、5.5分式方程文成实验中学马宏斌教学目标:1.了解分式方程的概念,和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.重点难点:1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,理解产生增根的原因.3.认知难点与突破方法解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法.至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应
2、让学生掌握验根的方法.要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母.要让学生掌握解分式方程的教学过程・编一编:在下列分式或整式中选择2个或3个式子,用“+”,组成一个方程:—,5绘x2-xx-32,3^问题1:这里一共可以构造几个方程?有几个是整式方程?问题2:剩下的19个方程有什么共同的特点?定义:像这样分母中含未知数的方程叫做分式方程.二.辨一辨:下面方程哪些是分式方程:—!—=2,--3x-1,g・5b-6,3・x22+x12-乂1_=——=2.X-32^-33-x三.例题讲解尝试解下列同学们编的2个分式方程:3-XX问题
3、3:若把方押•的解代入原方程來检验•同学们任(2)的检验时发现什么?生:发现代进去时,分母等于0,没有意义,代不进去了.定义:解分式方程时,使分母等于0的根,叫做增根.师生共同分析增根产生的原因:分式方程有意义的前提条件是分母不等于零,去分母转化为整式方程后,这个“分母不等于零”的条件已经消失,这样说扩大了末知数的取值范围,所以可能会产生增根。增根适合整式方程,而不适合原分式方程。增根应该舍去.如何检验增根:把末知数的值代入公分母,它不等于0,是原方程的根,它等于0,则是增根.四、随堂练习解方程:(1)3-2(2)2+36xx-6兀+1x—X—1(3)E4_!(4)2xX+=2x—1X—
4、12x—1x—2五•拓展提高:1.已知x二・2是方程一=12兀+m的根,求加的值。2.若关于册方程.2二1———x-3%-3有增根,则増根是,加二六.课堂小结.
此文档下载收益归作者所有