导数压轴题题型(学生版)

导数压轴题题型(学生版)

ID:33310314

大小:358.98 KB

页数:18页

时间:2019-02-24

导数压轴题题型(学生版)_第1页
导数压轴题题型(学生版)_第2页
导数压轴题题型(学生版)_第3页
导数压轴题题型(学生版)_第4页
导数压轴题题型(学生版)_第5页
资源描述:

《导数压轴题题型(学生版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.导数压轴题题型引例【2016高考山东理数】(本小题满分13分)已知.(I)讨论的单调性;(II)当时,证明对于任意的成立.1.高考命题回顾例1.已知函数ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;(2)若有两个零点,求a的取值范围....例2.(21)(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:....例3.(本小题满分12分)已知函数f(x)=(Ⅰ)当a为何值时,x轴为曲线的切线;(Ⅱ)用表示m,n中的最小值,设函数,讨论h(x)零点的个数例4.(本小题满分13分)已知常数,函数(Ⅰ)讨论在区间上的单调性;

2、(Ⅱ)若存在两个极值点且求的取值范围....例5已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0....例6已知函数满足(1)求的解析式及单调区间;(2)若,求的最大值。例7已知函数,曲线在点处的切线方程为。(Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围。...例8已知函数f(x)=(x3+3x2+ax+b)e-x.(1)若a=b=-3,求f(x)的单调区间;(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6.2.在解题中常用的有

3、关结论※(1)曲线在处的切线的斜率等于,且切线方程为。(2)若可导函数在处取得极值,则。反之,不成立。(3)对于可导函数,不等式的解集决定函数的递增(减)区间。(4)函数在区间I上递增(减)的充要条件是:恒成立(不恒为0).(5)函数(非常量函数)在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次函数且I=R,则有)。(6)在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立(7)若,恒成立,则;若,恒成立,则(8)若,使得,则;若,使得,则....(9)设与的定义域的交集为D,若D恒成立,则有.(10)若对、,

4、恒成立,则.若对,,使得,则.若对,,使得,则.(11)已知在区间上的值域为A,,在区间上值域为B,若对,,使得=成立,则。(12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0.(13)证题中常用的不等式:①②1xx+≤③④⑤⑥3.题型归纳①导数切线、定义、单调性、极值、最值、的直接应用(构造函数,最值定位)(分类讨论,区间划分)(极值比较)(零点存在性定理应用)(二阶导转换)例1(切线)设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点求证:....例2(最值问题,两边分求)已知函数.⑴当时,讨论的单

5、调性;⑵设当时,若对任意,存在,使,求实数取值范围.②交点与根的分布例3(切线交点)已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围....例4(综合应用)已知函数⑴求f(x)在[0,1]上的极值;⑵若对任意成立,求实数a的取值范围;⑶若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.③不等式证明例5(变形构造法)已知函数,a为正常数.⑴若,且a,求函数的单调增区间;⑵在⑴中当时,函数的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.⑶若,且对任

6、意的,,都有,求a的取值范围....例6(高次处理证明不等式、取对数技巧)已知函数.(1)若对任意的恒成立,求实数的取值范围;(2)当时,设函数,若,求证例7(绝对值处理)已知函数的图象经过坐标原点,且在处取得极大值.(I)求实数的取值范围;(II)若方程恰好有两个不同的根,求的解析式;...(III)对于(II)中的函数,对任意,求证:.例8(等价变形)已知函数.(Ⅰ)讨论函数在定义域内的极值点的个数;(Ⅱ)若函数在处取得极值,对,恒成立,求实数的取值范围;(Ⅲ)当且时,试比较的大小....例9(前后问联系法证明不等式)已知,直线与函数的图像都相切,且与函数的图像的切点的

7、横坐标为1。(I)求直线的方程及m的值;(II)若,求函数的最大值。(III)当时,求证:例10(整体把握,贯穿全题)已知函数.(1)试判断函数的单调性;(2)设,求在上的最大值;(3)试证明:对任意,不等式都成立(其中是自然对数的底数).(Ⅲ)证明:....例11(数学归纳法)已知函数,当时,函数取得极大值.(1)求实数的值;(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(3)已知正数,满足,求证:当,时,对任意大于,且互不相等的实数,都有.④恒成立、存在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。