圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质(精)

ID:33238022

大小:911.00 KB

页数:11页

时间:2019-02-22

圆锥曲线定义、标准方程及性质(精)_第1页
圆锥曲线定义、标准方程及性质(精)_第2页
圆锥曲线定义、标准方程及性质(精)_第3页
圆锥曲线定义、标准方程及性质(精)_第4页
圆锥曲线定义、标准方程及性质(精)_第5页
资源描述:

《圆锥曲线定义、标准方程及性质(精)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.圆锥曲线定义、标准方程及性质一.椭圆定义Ⅰ:若F1,F2是两定点,P为动点,且(为常数)则P点的轨迹是椭圆。定义Ⅱ:若F1为定点,l为定直线,动点P到F1的距离与到定直线l的距离之比为常数e(0

2、建立+、等关系(3)椭圆上的点有时常用到三角换元:;(4)注意题目中椭圆的焦点在x轴上还是在y轴上,请补充当焦点在y轴上时,其相应的性质。二、双曲线(一)定义:Ⅰ若F1,F2是两定点,(为常数),则动点P的轨迹是双曲线。Ⅱ若动点P到定点F与定直线l的距离之比是常数e(e>1),则动点P的轨迹是双曲线。(二)图形:(三)性质方程:取值范围:;实轴长=,虚轴长=2b...焦距:2c准线方程:焦半径:,,;注意:(1)图中线段的几何特征:,顶点到准线的距离:;焦点到准线的距离:两准线间的距离=(2)若双曲线方程为渐近线方程:若渐近

3、线方程为双曲线可设为若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上)(3)特别地当离心率两渐近线互相垂直,分别为y=,此时双曲线为等轴双曲线,可设为;(4)注意中结合定义与余弦定理,将有关线段、、和角结合起来。(5)完成当焦点在y轴上时,标准方程及相应性质。三、抛物线(一)定义:到定点F与定直线l的距离相等的点的轨迹是抛物线。即:到定点F的距离与到定直线l的距离之比是常数e(e=1)。(二)图形:(三)性质:方程:;焦点:,通径;准线:;焦半径:过焦点弦长注意:(1)几何特征:焦点到顶点的距离=;焦点到准线的

4、距离=;通径长=顶点是焦点向准线所作垂线段中点。(2)抛物线上的动点可设为P或P...考点一求圆锥曲线方程求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.●典例探究[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双

5、曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.建立坐标系并写出该双曲线方程.命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力.知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程。错解分析:建立恰当的坐标系是解决本题的关键。技巧与方法:本题第一问是待定系数法求曲线方程。解:如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与B

6、B′平行于x轴.设双曲线方程为=1(a>0,b>0),则a=AA′=7又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有由题意,知y2-y1=20,由以上三式得:y1=-12,y2=8,b=7故双曲线方程为=1.[例2]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强.知识依托:待定系数法求曲线方程

7、,如何处理直线与圆锥曲线问题,对称问题.错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理.解法一:由e=,得,从而a2=2b2,c=b.设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,设AB中点为(

8、x0,y0),则kAB=-,又(x0,y0)在直线y=x上,y0=x0,于是-=-1,kAB=-1,设l的方程为y=-x+1.右焦点(b,0)关于l的对称点设为(x′,y′),由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=.∴所求椭圆C的方程为=1,l的方程为y=-x+1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。