欢迎来到天天文库
浏览记录
ID:33220829
大小:370.50 KB
页数:8页
时间:2019-02-22
《届高三数学第一学期综合试卷457.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、09届高三数学第一学期综合试卷2试卷命题人、责任人:盛兆兵分值:160分考试时间:120分钟一、填空题:本大题共14小题,每小题5分,共70分.主视图左视图俯视图第3题1.复数,则实数a的值是.2.已知集合,则M∩N.3.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为.4.已知函数是定义在上的奇函数,当时,,则当时,.5.在平面直角坐标系中,不等式组(a为常数)表示的平面区域面积是9,那么实数a的值为.6.在公差不为零的等差数列中,有,数列是等比数列,且,则.7.以复数-24+mi()的实部为首项,虚部为公差的等差数列,当且仅当n=10时,
2、其前n项和最小,则m的取值范围是.8.已知△ABC满足,则∠C=.9.若为锐角,且,则的值是.10.将函数y=f(x)sinx的图象向右平移个单位,再作关于x轴的对称曲线,得到函数y=1-2sin2x的图象,则f(x)是.11.银行计划将某储户的资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回报率支付给储户.为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户的回报率最大值为.12.下列结论:①已知命题p:;命题q:.则命题“”是假命题;②函数的最小值
3、为且它的图像关于y轴对称;20070326③函数在定义域上有且只有一个零点.其中正确命题的序号为.(把你认为正确的命题序号都填上)13、若函数(>0且≠1)的值域为R,则实数的取值范围14.已知函数(,n∈N*),其中[x]表示不超过x的最大整数,如[-2.1]=-3,[-3]=-3,[2.5]=2.定义是函数的值域中的元素个数,数列的前n项和为,则对n∈N*均成立的最小正整数m的值为.高三数学试卷一、填空题:二、解答题(本大题共6小题,每小题15分,满分90分)得分评卷人15.(本题满分14分)已知函数和的图象关于对称,且.(1)求函数的解析式;(2)解不等式.得分评卷人16.(本题满分1
4、4分)已知函数(1)求的最大值及最小正周期;(2)求使≥2的x的取值范围.得分评卷人17.(本题满分15分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.(1)FD∥平面ABC;(2)AF⊥平面EDB.得分评卷人18.(本题满分15分)已知数列{}的前n项和为Sn,若,问是否存在,使得对于一切成立,请说明理由.得分评卷人19.(本题满分16分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x),g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风
5、险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险。(1)试解释的实际意义;(2)设,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?得分评卷人20.(本题满分16分)已知二次函数.(1)若且,证明:的图象与x轴有两个相异交点;(2)证明:若对x1,x2,且x16、①③2015.(本题满分14分)已知函数和的图象关于对称,且.(1)求函数的解析式;(2)解不等式.解:(1)∵,又函数和的图象关于对称,∴g(x)的开口向下,大小不变,顶点坐标为(-1,3).…………………………5分∴.……………………………………7分(2)∵,∴,即.……………………………10分当时,,即,解得.………12分当时,解集为空集.……………13分∴不等式的解集是.………………………………14分16.(本题满分14分)已知函数.(1)求的最大值及最小正周期;(2)求使≥2的x的取值范围.解:(1)……2分.…5分.…………6分.…………………7分(2),..…………………9分.7、…………………………………12分.…………………………………13分的x的取值范围是.…………14分17.(本题满分14分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.(1)FD∥平面ABC;(2)AF⊥平面EDB.证明(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点,∴FM∥EA,FM=EA.∵EA、CD都垂直于平面ABC,∴CD
6、①③2015.(本题满分14分)已知函数和的图象关于对称,且.(1)求函数的解析式;(2)解不等式.解:(1)∵,又函数和的图象关于对称,∴g(x)的开口向下,大小不变,顶点坐标为(-1,3).…………………………5分∴.……………………………………7分(2)∵,∴,即.……………………………10分当时,,即,解得.………12分当时,解集为空集.……………13分∴不等式的解集是.………………………………14分16.(本题满分14分)已知函数.(1)求的最大值及最小正周期;(2)求使≥2的x的取值范围.解:(1)……2分.…5分.…………6分.…………………7分(2),..…………………9分.
7、…………………………………12分.…………………………………13分的x的取值范围是.…………14分17.(本题满分14分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.(1)FD∥平面ABC;(2)AF⊥平面EDB.证明(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点,∴FM∥EA,FM=EA.∵EA、CD都垂直于平面ABC,∴CD
此文档下载收益归作者所有