欢迎来到天天文库
浏览记录
ID:33192823
大小:15.73 MB
页数:75页
时间:2019-02-21
《人体运动合成的机器学习方法研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、声明本学位论文是我在导师的指导下取得的研究成果,尽我所知,在本学位论文中,除了加以标注和致谢的部分外,不包含其他人已经发表或公布过的研究成果,也不包含我为获得任何教育机构的学位或学历而使用过的材料。与我一同工作的同事对本学位论文做出的贡献均己在论文中作了明确的说明。研究生签名:孝妒■弦c;年弓月嵋日学位论文使用授权声明南京理工大学有权保存本学位论文的电子和纸质文档,可以借阅或上网公布本学位论文的全部或部分内容,可以向有关部门或机构送交并授权其保存、借阅或上网公布本学位论文的全部或部分内容。对于保密
2、论文,按保密的有关规定和程序处理。研究生签名:羔驾啦矽侈年≥月刁日硕士论文摘要随着以三维电影和游戏为代表的数字媒体娱乐产业的兴起,计算机动画技术的得到了长足的发展,已经成为国内外学者研究的热点。其中,人体运动捕获技术因其相对于其他运动生成技术的巨大优势,在科学研究和商业领域中应用十分广泛,但人体捕获技术也存在捕获成本昂贵、运动捕获数据重用率低等问题。如何对运动捕获数据进行重用,利用已有运动序列获得新的运动,具有非常重要的研究和经济意义。人体运动合成是指通过对运动数据库中的已有运动进行修改,产生符合
3、要求的新的运动片段。本文工作的意义在于,通过机器学习算法中的成分分析方法对运动数据建立语义化参数模型,利用带有具体语义信息的低维参数控制具有高维特性的人体运动序列,从而合成出逼真、自然的运动片段。主要包括以下3方面内容。1.基于独立成分分析的运动风格迁移算法。该方法将单个运动序列的每一帧作为样本,对两个具有不同风格的相似运动序列的组合进行独立成分分析,提取出独立成分中变化趋势差异较大的独立成分进行选择,将带有特有风格的独立成分分量在两个运动序列中迁移,合成出新的运动序列。通过实验验证了该算法能够实
4、现运动风格的迁移。2.基于主成分分析和分块主成分分析的人体运动合成。基于主成分分析的人体运动合成算法对运动数据库中的相似运动片段进行处理,将高维运动数据映射到低维空间中,通过修改低维参数合成新的运动,该算法存在低维参数的不可理解性问题。本文在此基础上,提出了一种基于分块主成分分析的人体运动合成方法。该算法根据人体骨骼模型对运动数据分组,对每个分组分别进行主成分分析,所获得的低维参数具有特定的语义。通过实验证明,用户可以直观地理解低维参数的语义,其算法效率也达到实时水平。3.基于独立成分分析和分块独
5、立成分分析的人体运动合成。基于独立成分分析的人体运动合成算法过程与基于主成分分析的人体运动合成算法相似,采用独立成分分析对运动数据进行处理,获得的低维语义参数解决了可理解性问题。本文对该算法进行了改进,结合独立成分分析与运动数据分组思想,提出了一种基于分块独立成分分析的人体运动合成算法。通过增加分组内独立成分的个数,提高了局部运动细节控制力度。实验证明,改进后的算法在满足用户要求的同时,降低了用户的交互复杂度。关键字:人体运动捕获数据,运动风格,运动合成,独立成分分析,主成分分析Abstract硕
6、士论文Withtheriseofdigitalmediaentertainmentindustrywhichrepresentedby3Dmoviesandgames,computergraphichasdevelopedextremelyrapidlyanditisofmoreandmoreparticularinterest.Amonganumberofmotiongenerationtechnologies,humanmotioncaptureismostwidelyusedinthefie
7、ldofscienceandindustry.However,therearealsoseveralproblemswithhumanmotioncapture,suchastheexpensivecapturecostanddifficultytoreusecaptureddata.Howtoreusethecaptureddataandcreatenewmotionsisgreatvaluableforscienceandeconomy.Humanmotionsynthesisisthatwe
8、modifytheexistedmotionsinthemotiondatabasestocreatenewmotionswhichmettherequirement.Inthisthesis,weproposesemanticparametricmodelsofmotiondatabycomponentanalysismethodswhicharepansofmachineleamingalgorithms.Thehilgh-dimensionalmotionsquencesar
此文档下载收益归作者所有