初升高衔接课讲义学生版

初升高衔接课讲义学生版

ID:33155184

大小:1.09 MB

页数:66页

时间:2019-02-21

初升高衔接课讲义学生版_第1页
初升高衔接课讲义学生版_第2页
初升高衔接课讲义学生版_第3页
初升高衔接课讲义学生版_第4页
初升高衔接课讲义学生版_第5页
资源描述:

《初升高衔接课讲义学生版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数学学数学的几个建议:1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。3、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。4、经常对知识结构进行梳理,

2、形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。5、多做数学课外题,在学校基础上适当加量,拓展自己的知识面。6、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。7、学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。8、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,

3、为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。9、无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。初高中数学衔接教材现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。662.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3.二次根式中对分子、分

4、母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,6.图像的对称、平移变换,初中只作简单

5、介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。目录1.1数与式的运算1.1.1绝对值1.1.2.乘法公式1.1.3.二次根式1.

6、1.4.分式1.2分解因式2.1一元二次方程662.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用2.3方程与不等式2.3.1二元二次方程组解法2.3.2一元二次不等式解法3.1相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2三角形3.2.1三角形的“四心”3.2.2几种特殊的三角形3.3圆3.3.1直线与圆,圆与圆的位置关系1.1数与式的运算1.1.1.绝对值一、概念:66绝

7、对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.二、典型例题:例1解不等式:练习A1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)若,则(B)若,则(C)若,则(D)若,则练习B663.解不等式:4、化简:

8、x-5

9、-

10、2x

11、-13

12、(x>5).1.1.2.乘法公式一、复习:我们在初中已经学习过了下列一些乘法公式:(1)平方差公式;(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;建议记住(2)立方差公式;(3)三数和平方公式;(4)两数和立方公式;(5)两数差立方公式.对上面列出的五个公式,有兴趣的同学可以自己去证明.二、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。