基于统计学习的机场跑道异物检测

基于统计学习的机场跑道异物检测

ID:33013172

大小:3.32 MB

页数:71页

时间:2019-02-19

基于统计学习的机场跑道异物检测_第1页
基于统计学习的机场跑道异物检测_第2页
基于统计学习的机场跑道异物检测_第3页
基于统计学习的机场跑道异物检测_第4页
基于统计学习的机场跑道异物检测_第5页
资源描述:

《基于统计学习的机场跑道异物检测》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ABSTRACTABSTRACTFODdetectionforairportrunwayisanemergingissueandhasbeenproposedinrecentyears.AllresearchesaboutFODdetectionincludemillimeterwaveradartechnologyandimageprocessingtechnology.Ifweadoptmillimeterwaveradartechnology,thecostofFODdetectionwillbeveryhigh;thesiz

2、erequirementsofFODwillbehigh;therequirementsofhardwaredevicewillbeveryhigh.Moreover,Chinadoesn’thavematureandrelevantcommercialsystems.Ifweadoptimageprocessingtechnology,thecostofFODdetectionwillberelativelylow;therequirementsofhardwaredevicewillberelativelylow.Moreove

3、r,imagemonitoringsystemhasbeeninstalledinthevicinityofrunwayinsomeairports.Thus,inthispaper,weadoptimageprocessingtechnologytoachieveFODdetection.Inthispaper,thetargetdetectionmethodbasedonstatisticallearningisappliedtoFODdetectionsystem.Wemakeuseofmaturefacedetections

4、ystem;keepAdaboostclassifiermethodcommonlyusedinfacedetectionsystem;improveorexcludefeaturescommonlyusedinfacedetectionsystem;findasuitablefeatureforFODdetectionsystem.FirstweintroduceLBPfeaturecommonlyusedinfacedetectionsystem;applyLBPfeaturetoFODdetectionsystem;verif

5、ythefeasibilityofLBPfeaturethroughexperimentalresults.TheexperimentalresultsshowthatLBPfeatureisnotfeasible.Accordingtothecharacteristicsofairportrunwaypictures,weproposeanewhistogramfeaturewhichisbasedonSUSANfeature.Thentheexperimentalresultsshowthatnewfeatureisfeasib

6、le.Secondlyinthepicturestodedetected,therearealotoffalsealarmsaroundtherunwaylines.Tosolvetheproblemweproposeawaybasedonimagesegmentationtoremovethefalsealarmsaroundtherunwaylines.Wefindthepositionsoftherunwaylinesthroughmarkingedgepoints.Accordingtothepositionsoftheru

7、nwaylines,wedividethepicturesintopartscontainingtherunwaylinesandpartswithoutcontainingtherunwaylines,respectivelymakeuseoftargetdetectionbasedonKirschfeatureandstatisticallearning.FinallyweintroducetheprincipleandtrainingprocessesofAdaboostclassifier.Themaincontributi

8、onsofthispaperaresummarizedinthefollowingthreepoints:(1)AnewhistogramfeaturebasedonSUSANfeatureisproposedWeproposeane

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。