欢迎来到天天文库
浏览记录
ID:32921689
大小:54.57 KB
页数:3页
时间:2019-02-17
《对常微分方程稳定性研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、对常微分方程稳定性研究摘要:稳定性理论是微分方程的一个重要分支,是由研究运动问题而发展起来的,就常微分方程的稳定性进行进一步的分析.关键词:常微分方程;稳定性;李雅普诺夫函数Abstract:Stabilitytheoryisaimportantpartofdifferentialequation,isdevelopedbyresearchingintotheathieticsproblem.Inthispaperisthefurtheranalysisofordinarydifferentialequation'sstability.Keywords:ordinarydi
2、fferentialequation;Stabilitytheory;Lyapunovfunction稳定性理论是19世纪80年代由俄国数学家李雅普诺夫[1]创建的•稳定性理论在自动控制、航天技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用[2],其概念和理论发展十分迅速,本文中构造李雅普诺夫函数来判定常微分方程的稳定性.一、李雅普诺夫函数介绍[3]考虑集合wBRn,f:w-^Rn连续可微。■是系统■二f(X)(1)的平衡点.定理1:如果U是■的领域,U・W有函数V:U-R,在U上连续,在U-■上可微,满足(1)V(■)=0;V(x)>0,当xZ・(2)V二
3、・V(x(t))WO,当xH・,其中x(t)是系统(1)的轨线,则■是稳定的.(3)若函数V还满足V0时,特征方程的两个根都有负实部,(4)式的零解是渐近稳定的,非线性系统(4)式无法用特征根的方法判定,但可以用类似于线性系统的李雅普诺夫函数去判断其稳定性,事实上对(4)式取v‘(xl,x2)=(all+a22)(alIa22~al2a21)xl2,则它的半负定的函数,利用巴尔巴欣公式得v(xl,x2)=B(alla22-alla22)xl2+B(a22xl~al2x2)2V(xl,x2)是正定函数,所以(7)式的解是稳定的,由此类比构造与线性系统类似的V函数V(xl,x2
4、)=■Ba22-al2a21xldxl+B(a22xl-al2x2)2V(xl,x2)正定,计算导数得小于等于0.所以(4)式的零解是稳定的.三、结论1•在使用李雅普诺夫函数判定稳定性时,当我们找不到满足稳定性定理条件的函数V(x)时,我们无法断定零解是否稳定的,其构造的李雅普诺夫函数不同时,判定零解是否渐近稳定及吸引域的大小也会有差异.2•在利用李雅普诺夫方法判定稳定性时,一个问题是满足一定条件的李雅普诺夫函数是否存在及当系统的零解有某种稳定性时,满足这个稳定性的V(X)是否存在.参考文献:[1]蔡燧林•常微分方程[M].武汉:武汉大学出版社,2003.[2]丁同仁.常微
5、分方程定性方法的应用[M].北京:高等教育出版社,2004.[3]马知恩,周义仓•常微分方程定性与稳定性方法[M].北京:科学出版社,2001.[4]张庆灵•广义系统结构稳定的李亚谱诺夫方法[J].系统科学与数学,1994,14(02):117-120.(作者单位辽宁省阜新市细河区职业教育中心)
此文档下载收益归作者所有