欢迎来到天天文库
浏览记录
ID:32467557
大小:8.42 MB
页数:119页
时间:2019-02-06
《陶瓷中空纤维氧分离膜研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、摘要基于氧离子电子混合传导的陶瓷氧分离膜有望将现有的氧气生产成本降低30%以上。氧分离膜技术实用化的主要障碍是缺乏氧渗透性能和稳定性均能满足要求的膜材料。本论文提出了突破这一障碍的新思路,即把稳定性好但氧渗透速率偏低的双相复合材料制成中空纤维膜,利用纤维膜单位面积氧渗透速率高、单位体积可填充的膜数量大的优点,从而大幅度提高膜组件和膜装置的制氧能力。第一章简要介绍了陶瓷氧分离膜的原理、背景和应用,重点综述了陶瓷中空纤维氧分离膜的研究进展、现状和主要问题。第二章研究了由氧离子导体zr084Yo.1601.92(YSz)和电子导体La0.8sro2Mn03一“LSM)构成的双相复合氧分
2、离膜。采用相转化/烧结法将复合材料制成气密的中空纤维。所制得的纤维膜的外径为1.64mm,壁厚为O.16mm。中空纤维膜的热膨胀系数为11.1×10’6K~,三点支撑法测定的断裂强度为152±12MPa。测量纤维膜的氧渗透速率时采用长度为57.Omm的样品,其外壁与空气接触,用氦气或者C02作为吹扫气将渗透的氧携带出,用气相色谱分析。在950。c和He气吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为2.1×10刁m01.cm~.s-l。采用二氧化碳替代氦气作为吹扫气,氧渗透速率没有下降。基于YSZ.LSM复合膜优异的耐C02侵蚀性能,我们采用该分离膜实验验证了富氧燃烧
3、一C02捕获所需的02/C02混合气的制各新工艺,即在膜管的外侧施加高的氧分压(压缩空气),通过调节管内c02吹扫气的速率,可以获得氧分压为0.2.O.3大气压的02,C02混合气。若采用该混合气作为含碳燃料的助燃剂,燃烧产物含高浓度的C02,可以方便地实现C02的捕获。与常见的单相钙钛矿型氧分离膜材料相比,Ysz.LSM复合氧分离膜的另一个重要特点是不含贵重和有毒的元素。综合考虑材料的氧渗透率和稳定性以及中空纤维膜的高填充密度,Ysz.LsM中空纤维膜的实用化前景良好。第三章研究了ceo8smo202—5(sDC)和LSM双相复合氧分离膜,其中SDC作为氧离子导电相,其氧离子电
4、导率在中温明显高于YSZ。采用相转化/烧结法将该复合材料制成气密的中空纤维膜。在air/He和air/C02梯度下,中空纤维膜在9500C时的氧渗透速率分别为3.2×104m01.cm~.s’1和3.0×10‘7mol-cm~·s’1。。经过700多个小时的测试,膜管的氧渗透速率只略有下降。SDC.LSM膜材料在二氧化碳中稳定存在,且具有较高氧渗透速率,可望用于制备富氧燃烧一C02捕获所需的02/C02混合气。采用活塞式流动模型和wagner氧渗透理论模拟了双相复合中空纤维膜的氧渗透行为。该模拟方法可以用于膜管(组件)的氧气产能计l摘要算等。第四章研究了YSz—La0.ssr0.
5、2Cro.5Mno.503.6(LSCM)双相复合氧分离膜。LSCM是一种新报道的固体氧化物燃料电池阳极材料,在还原性条件下能保持稳定。采用相转化/烧结法将该双相复合膜制成气密的中空纤维膜。所制得的纤维膜形貌均匀,膜体内部不含有手指状的大孔,只含有少量闭气孔。纤维膜具有优异的机械性能,其断裂强度高达279±5MPa。在950。C和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为3.3×10。8moI.cm~.s。1。。改用同样流速的还原性气体CO作为吹扫气,经过250小时左右时间氧渗透速率达到稳定,为3.9×10‘7mol-cm~·s~。在air/Co梯度下经过60
6、0小时实验后,膜管仍然保持完好,没有出现裂纹。鉴于膜材料在大氧分压梯皮下优异的稳定性,YSz—LScM中空纤维膜有希望用于膜反应器。第五章研究了SDC.LSCM双相复合氧分离膜。与前述几章不同,本研究没有采用SDC和LSCM粉体作为起始原料,而是采用金属氧化物和碳酸盐作为前驱物来制备浆料,挤出成型。这种改进的相转化法制备中空纤维膜的方法去掉了预先合成陶瓷粉这一步骤,将本来五步的工艺过程缩减为四步,并将成相和烧结在一步完成,缩短了制备时间,也减少了能耗,有利于降低制备成本。采用TGA/DTA研究了纤维膜坯体的热解行为,采用热膨胀仪研究了膜管的高温烧结过程。最终选定的热处理条件是:在
7、N2(+H24%)的气氛中,以2oC/min的速率升温将纤维膜坯体升至800。C,保温240min,除去有机物,升温至13500C,保温300min,得到气密的陶瓷中空纤维膜。SEM和XRD分析表明烧结后的膜管由SDC和LSCM两相构成,不含其它杂相。在9500C和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为1.4×10~m01.cm~.s~。改用同样流速的还原性气体cO吹扫时,氧渗透速率大幅增加至3.3×10。6mol-cm~·s~。显然,从空气侧渗入的氧与C
此文档下载收益归作者所有