【5A版】极限的概念.ppt

【5A版】极限的概念.ppt

ID:32367015

大小:1.45 MB

页数:40页

时间:2019-02-03

【5A版】极限的概念.ppt_第1页
【5A版】极限的概念.ppt_第2页
【5A版】极限的概念.ppt_第3页
【5A版】极限的概念.ppt_第4页
【5A版】极限的概念.ppt_第5页
资源描述:

《【5A版】极限的概念.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、学习要求1.理解极限的概念;熟练掌握基本初等函数在自变量的某个过程中的极限。2.掌握函数在一点极限存在的充要条件,会求分段函数在分段点的极限。§1.2极限割圆求周长思路:利用圆的内接正多边形近似替代圆的周长随着正多边形边数的增多,近似程度会越好。问题:若正多边形边数n无限增大,两者之间的关系如何?我国古代数学家刘徽用割圆术,初步解决了这个问题。1、求圆的周长问题一、极限概念的引入割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与

2、圆周合体而无所失矣”——刘徽割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣

3、”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:——刘徽通过上面演示观察得:若正多边形边数n无限增大,则正多边形周长无限接近于圆的周长。1、数列极限定义的引入例解:数列对应着数轴上一个点列.可看作一动点在数轴上依次取01对于“无限接近”这种变化趋势,我们给出下面的数学定义:通过上面演示观察得:二、数列极限注意:如果数列没有极限,就说数列是发散的.2.数列极限的定义例解:010确定常数极限存

4、在(非确定常数)极限不存在(发散)极限不存在(发散)由于数列实际上可以看成是定义域为正整数域的函数,所以,可望将数列的极限理论推广到函数中,并用极限理论研究函数的变化情形.的图形可以看出:如何描述它?正发现问题没有?当x+时,函数趋于/2;当x-时,函数趋于-/2;那?例思考题:的极限存在吗?12、当x时,函数f(x)极限存在的充要条件1、不存在0不存在0不存在(2)(1)不存在例:观察下列函数在x趋于无穷时极限是否存在.2、不存在小结1.研究变量(数列或函数)的变化趋势2.数列极限:当n时,an

5、A.否则无极限。3.函数极限(1)当x时,f(x)A(2)当x+时,f(x)A(3)当x-时,f(x)Axx0时函数的极限,是描述当x无限接近x0时,函数f(x)的变化趋势.注意:2、xx0时函数的极限解:由图形可以看到f1(x)在点x=1处有定义.函数f2(x)在点x=1处没有定义.例:观察并求出下列极限1o1-1=1=0=0=1=1=-1总结:若函数f(x)是定义域为D的初等函数,且有限点,则极限如:C3、单侧极限(左极限和右极限)解观察可知:例左极限右极限求14.函数在一点极限存在的充分必要条

6、件左、右极限相等极限存在左右极限存在但不相等,证例例解?如何求分段点左右两边表达式相同不需分左右极限5、讨论分段函数在分段点的极限的步骤:注意:有时不需分左右极限求解x-111-1oy练习解解练习五、极限的性质2、局部有界性1、唯一性了解即可!六、小结2.理解极限的七种变化过程的极限的定义3.用定理1.1讨论分段函数在分段点的极限4.结合图形熟记基本初等函数在各点的极限.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。