欢迎来到天天文库
浏览记录
ID:32306091
大小:444.00 KB
页数:21页
时间:2019-02-03
《概率统计专题复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率统计专题知识要点11.概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率.3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:.②对立事件:两个事件必有一个发生的互斥事件叫对立事件.
2、注意:i.对立事件的概率和等于1:.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个事件相互独立,则它们同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B).推广:若事件相互独立,则.注意:i.一般地,如果事件A与B相互独立,那么A与与B,与也都相互独立.4.对任何两个事件都有概率统计知识要点2一、随机变量.1.随机试验的结构应该是不确定的.试验如果满足下述条件
3、:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ξ取每一个值的概率
4、,则表称为随机变量ξ的概率分布,简称ξ的分布列.……P……有性质①;②.注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中]于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记.⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否
5、是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4.⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取件,则其中的次品数ξ是一离散型随机变量,分布列为.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定<时,则k的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件
6、次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为.⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,等可能:含个结果,故,即~.[我们先为k个次品选定位置,共种选法;然后每个次品位置有a种选法,每个正品位置有b种选法]可以证明:当产品总数很大而抽取个数不多时,,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方
7、差.1.期望的含义:一般地,若离散型随机变量ξ的概率分布为……P……则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2.⑴随机变量的数学期望:①当时,,即常数的数学期望就是这个常数本身.②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.ξ01Pqp③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑶两点分布:,其分布列为:(p+q=1)⑷二项分布:其分布列为~.(P为发生的概率)⑸几何分布:其分布列为~.(P为发生的概率)3
8、.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差.显然,故为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.4.方差的性质.⑴随机变量的方差.(a、b均为常数)ξ01Pqp⑵两点分布:其分布列为:(p+q=1)(3)二项分布:(4)几何分布:5.期望与方差的关系.⑴如果和都存在,则⑵设ξ和是互相独立的两个
此文档下载收益归作者所有