数列解题技巧归纳总结-打印

数列解题技巧归纳总结-打印

ID:32216553

大小:653.00 KB

页数:10页

时间:2019-02-01

数列解题技巧归纳总结-打印_第1页
数列解题技巧归纳总结-打印_第2页
数列解题技巧归纳总结-打印_第3页
数列解题技巧归纳总结-打印_第4页
数列解题技巧归纳总结-打印_第5页
资源描述:

《数列解题技巧归纳总结-打印》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数列解题技巧归纳总结等差数列与等比数列:等差数列等比数列文字定义一般地,如果一个数列从第二项起,每一项与它的前一项的差是同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。一般地,如果一个数列从第二项起,每一项与它的前一项的比是同一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。符号定义分类递增数列:递减数列:常数数列:递增数列:递减数列:摆动数列:常数数列:通项其中()前n项和其中中项主要性质等和性:等差数列若则推论:若则即:首尾颠倒相加,则和相等等积性:等比数列若则推论:若则即:首尾颠倒相乘,则积相等其1、等差数列

2、中连续项的和,组成的新数列是等差数列。即:等差,公差为1、等比数列中连续项的和,组成的新数列是等比数列。即:等比,公比为。它性质则有2、从等差数列中抽取等距离的项组成的数列是一个等差数列。如:(下标成等差数列)3、等差,则,,,也等差。4、等差数列的通项公式是的一次函数,即:()等差数列的前项和公式是一个没有常数项的的二次函数,即:()5、项数为奇数的等差数列有: 项数为偶数的等差数列有:,6、则 则则2、从等比数列中抽取等距离的项组成的数列是一个等比数列。如:(下标成等差数列)3、等比,则,,也等比。其中4、等比数列的通项公式类似于的指数函

3、数,即:,其中 等比数列的前项和公式是一个平移加振幅的的指数函数,即:5、等比数列中连续相同项数的积组成的新数列是等比数列。证明方法证明一个数列为等差数列的方法:1、定义法:2、中项法:证明一个数列为等比数列的方法:1、定义法:2、中项法:三数等差:三数等比:设元技巧四数等差:四数等比:联系1、若数列是等差数列,则数列是等比数列,公比为,其中是常数,是的公差。2、若数列是等比数列,且,则数列是等差数列,公差为,其中是常数且,是的公比。数列的项与前项和的关系:数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数

4、列求和。2、错项相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。       适用于数列和(其中等差)       可裂项为:,等差数列前项和的最值问题:1、若等差数列的首项,公差,则前项和有最大值。(ⅰ)若已知通项,则最大;(ⅱ)若已知,则当取最靠近的非零自然数时最大;2、若等差数列的首项,公差,则前项和有最小值(ⅰ)若已知通项,则最小;(ⅱ)若已知,则当取最靠近的非零自然数时最小

5、;数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。⑵已知(即)求,用作差法:。已知求,用作商法:。⑶已知条件中既有还有,有时先求,再求;有时也可直接求。⑷若求用累加法:。⑸已知求,用累乘法:。⑹已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求;形如的递推数列都可以除以得到一个等差数列后,再求。(2)形如的递推数列都可以用倒数法求通项。(3)形如的递推数列都可以用对数法求通项。(7)(理科)数学归纳法。(8)当遇到时,分奇数项偶数项讨论,结

6、果可能是分段典型题的技巧解法1、求通项公式(1)观察法。(2)由递推公式求通项。对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、 已知{an}满足an+1=an+2,而且a1=1。求an。例1、解 ∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求.解:由已知可知令n=1,2,…,(n-1),代

7、入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★说明 只要和f(1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求.解法一:由已知递推式得an+1=3an+2,an=3an-1+2。两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(3×1+2)-1=4∴an+1-an=

8、4·3n-1∵an+1=3an+2 ∴3an+2-an=4·3n-1即an=2·3n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。