欢迎来到天天文库
浏览记录
ID:31975956
大小:28.00 KB
页数:5页
时间:2019-01-29
《神奇的黄金比教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、神奇的黄金比教学设计 一、导入 1.初感黄金比 师:同学们,最近有一个图案,经常出现在我的眼前,想不想看一看? 是什么呀?为什么大家都这么喜欢埃菲尔铁塔呢? 美,美在何处呢?能从数学的角度欣赏美,他说到什么?(板书:黄金比) 2.有请大明星 师:今天啊,老师还请来了三位大明星,想不想认识一下? 第一位神秘人身高180,他是谁啊?第二位可是演艺界大腕(潘长江),第三位,真正的美女(杨幂)。 师:请根据以上数据填写表格,观察这组数据的比值,你有什么发现? 小结:谁的身材更美?真有意思,今天,我们就一起来研究"
2、神奇的黄金比"(板书)。 二、探究 1.认识"黄金分割" (1)定义揭示 师:究竟什么叫做"黄金比"呢?书上是这样描述的:黄金比的比值约等于0.618。从古希腊以来,一直有人认为把黄金比应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。(添配音和插图优化课件) 你获得哪些信息? 是的,比值0.168是一个近似数,你们知道它的精确值是多少? 大家看一下(这是它小数点后100位的情况,这是后1024位的情况)(如何更具震撼力) 能写完吗?对,这是一个--(无限不循环小数)所以记作
3、≈0.618 看到这个小数,你能联想到哪些常用的分数?(、和) 关于黄金比,老师还查阅了相关的资料:黄金分割,把一条线段分成两部分,使其中一部分与全长的比等于另一部分与这部分的比,比值约为0.618。(见《现代汉语词典》P600)(再查词典,看有没有约这个字,如果没有可以再拓展一下,配图和声音会更好,低沉一些的声音) (2)活动感知 师:能理解吗?我们把刚刚欣赏的埃菲尔铁塔用一条线段来表示,这条线段长1米,就用眼睛看,你能确定黄金分割点的大概位置吗?谁愿意上来来试一试。 师:虽然只是用眼睛看,其实我们可以想着哪个小
4、数?(0.618)所以1米长的线段上我们只要找到?(61.8厘米的位置就可以了)我们来帮他量一量,看看准不准(标出准确的黄金分割点)。 师:这时候,黑板上一共出现了几条线段?你能找到两组相等的比吗?验证一下。 板书(齐读)AP:AB=BP:PA 瞧,这里部分和整体,部分和部分它们比的比值都约等于0.618,是不是够神奇的? 如果把这条线段当成舞台,我们标的这个位置也就是舞台上主持人通常站的大致位置,这个位置观众感觉是最舒服的。 回到真实的埃菲尔铁塔,你能在上面找到它的黄金比吗?算一算吧! 2.认识"黄金矩形"
5、(1)感知 师:一起玩一个'游戏'好吗?选出你认为最美的矩形。 选好了吗?其实这个游戏可不是王老师自创的,而是一百多年前德国心理学家费希纳做的一项科学实验,实验结果和我们刚刚小调查的结果差不多,大多数被调查者都选择了4号矩形。为什么这样的矩形更受欢迎呢? 师:我们看看4号矩形的宽和长,其实,还不止这些呢!如果把这个矩形剪掉一个最大的正方形,想一想剩下什么形状?这个长方形长得还"美"吗? 如果在剩下的黄金矩形中再剪掉一个最大的正方形,剩下的长方形? 再剪下去?如果有兴趣,可以一直剪下去,剩下的黄金矩形,只是面积变化了
6、,形状一直没变。 师:正是由于黄金矩形非常协调,古希腊的巴特农神庙就采用了这样的设计。 (2)应用 师:如果老师给你一条长94mm的线段,请你再找一条线段,围成一个黄金矩形,你能找到吗?试着在作业纸上画出这个矩形。(学生用计算器找并在作业纸上完成) 生1:约等于58mm,用94乘0.618,想象这个长方形的样子,这其实是名片的形状; 生2:约等于152mm,用94除以0.618,想象这个长方形的样子,这可做不了名片了,但可以做明信片。(出示明信片)这就是我们公司设计的明信片。 三、生活中的"黄金比" 师:生活中
7、的"黄金比"更是无处不在,瞧,四块内容,你对哪一块更感兴趣? 1.西湖美 2.摄影的秘密 3.植物的神奇 4.五角星之谜 四、提升: 今天的这节课,有不一样的感受吗? 还有什么不明白的地方? 五、应用黄金比 1.妈妈的高跟鞋 我们很多同学的妈妈都是美丽的芭蕾舞演员呢?你能试着解释吗? 妈妈的身高为160厘米,下半身为96厘米,你建议妈妈穿多高的高跟鞋呢?说说你的理由。 2.斐波那契数列之谜 1、1、2、3、5、8、()、21、34、()、89…… 这是很多同学非常熟悉的一个数列,又叫兔子数列,请你
8、查找资料了解它的来龙去脉,并用计算器算一算,相邻两个数比的比值,得数保留三位小数。 师生交流:你有什么发现?
此文档下载收益归作者所有