多传感器数据融合中多目标跟踪关键技术.研究

多传感器数据融合中多目标跟踪关键技术.研究

ID:31948699

大小:2.89 MB

页数:109页

时间:2019-01-29

多传感器数据融合中多目标跟踪关键技术.研究_第1页
多传感器数据融合中多目标跟踪关键技术.研究_第2页
多传感器数据融合中多目标跟踪关键技术.研究_第3页
多传感器数据融合中多目标跟踪关键技术.研究_第4页
多传感器数据融合中多目标跟踪关键技术.研究_第5页
资源描述:

《多传感器数据融合中多目标跟踪关键技术.研究》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、多传感器数据融合中多目标跟踪关键技术研究arebothappliedtorebuildingnodecompatibilityfunctionsandedgecompatibilityfunctions.Theproposedalgorithmimprovesdataassociationperformanceinthesensornetworks;thet11irdmethod:themulti—characterinformationandthekinematicinformationarcfuseddirectly,bothusedto

2、FuzzyC-meansclusterbasedOUdataassociationalgorithm.Indensemeasurements,whenthekinematicinformationisonlyusedtocluster,theassociationresultisalwaysnotcorrect.Sothatintheproposedalgorithm,thecalculationofkeyparameter-distanceandsubjectionfunctionsisbasedonbothkenematicinforma

3、tionandmultiplefeaturesofthetarget.Furthermore.theeffectoffeaturescanbeadjusted,thusdataassociationisbeRerrealizedbasedonthemultiplefeatures.necomprehensiveinformationgreatlyraisestheperfornmceofdataassociation.Finally,outlierandout—of-sequencemeasurement,twopossiblekindsof

4、uncertainsituationindatafusionsystem,areresearched.Foroutlier,whenitarrivesinfusioncenterdirectly,itwouldinducelargedeviationtodatafusion.Soamethodofreal-timeeliminatingoutliermulti—sensordatafusionisproposed.Inthismethod,firstlythetrackofmulti—sensorisclusteredbyFCM,andthe

5、ntheoutliersaredetectedandeliminated,accordingtothecompactdegreeandthemembership.Finallyforecastedestimationtakestheplaceofoutliers,andissenttofusion.Thismethodsolvesoutlierproblemrapidlyandeffectively,aswellasdataassociationproblem;Forout-of-sequencemeasurement(OOSM),tradi

6、tionalfilterscanhardlydealwithit.AccordingtoextendedKalmanfilter(EKF)based00SMfilterhaslowprecisionforthenonlinearsystem.anoptimalandasub—optimalUnscentedKalmanfilterforout-of-sequencemeasurementsarcproposed.11bprocedureofout-of-sequencemeasurementupdating,thatconvertingmul

7、tiplestepslagproblemtoonesteplagproblem,isdeducedagainbasedonI,KF.Andthemethodneedslittlememoryburden.Simulationresultsshowthatthepresentedalgorithmsaremoreeffectiveinutilizingout—of-sequencemeasurementsandtargettrackingperformancethanthoseinEKFfilterfornonlinearsystem.Atla

8、st,thetreatmentofmultiple00SMs,whichhavethesamelags,isresearched.AFCMbaseddataasso

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。