欢迎来到天天文库
浏览记录
ID:31920654
大小:410.50 KB
页数:14页
时间:2019-01-27
《2016年江苏省无锡市中考数学试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(2016·无锡)﹣2的相反数是( )A.B.±2C.2D.﹣【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C. 2.(2016·无锡)函数y=中自变量x的取值范围是( )A.x>2B.x≥2C.x≤2D.x≠2【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B. 3.(2016·无锡)sin30°的值为(
2、 )A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A. 4.(2016·无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)123457人数(人)114231这12名同学进球数的众数是( )A.3.75B.3C.3.5D.7【考点】众数.【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B. 5.(2016·无锡)
3、下列图案中,是轴对称图形但不是中心对称图形的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A. 6.(2016·无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70°B.35°C.20°D.40°【考点】切线的性质;圆周角定
4、理.【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D. 7.(2016·无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于( )A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥的计算.【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×
5、8π×6=24π(cm2).故选:C. 8.(2016·无锡)下列性质中,菱形具有而矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【考点】菱形的性质;矩形的性质.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是
6、矩形具有的性质,菱形不一定具有.故选:C. 9.(2016·无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为( )A.﹣2或4B.2或﹣4C.4或﹣6D.﹣4或6【考点】一次函数的性质;含绝对值符号的一元一次方程.【分析】将两个一次函数解析式进行变形,根据两平行线间的距离公式即可得出关于b的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:一次函数y=x﹣b可变形为:4x﹣3y﹣3b=0;一次函数y=x﹣1可变形为4x﹣3y﹣3=0.两平行线间的距离为:d==
7、b﹣1
8、=3,解得:b=﹣4或b=6.故选D. 10.(2016·无锡)如图,Rt△ABC中,∠
9、C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A.B.2C.3D.2【考点】旋转的性质;含30度角的直角三角形.【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB
此文档下载收益归作者所有