资源描述:
《2016年福建省泉州市晋江市季延中学高一上学期人教a版数学期末测试试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2016年福建省泉州市晋江市季延中学高一上学期人教A版数学期末测试试卷一、选择题(共12小题;共60分)1.设M=3,a,N=1,2,M∩N=1,M∪N= A.1,3,aB.1,2,3,aC.1,2,3D.1,32.函数fx=x−1+ln4−x的定义域是 A.1,+∞B.1,4C.1,4D.4,+∞3.一个几何体的三视图如图所示,则该几何体的体积为 A.πB.2πC.4πD.8π4.直线x−y+3=0的倾斜角是 A.30∘B.45∘C.60∘D.905.下列函数既是奇函数又是偶函数的是 A.fx=x+1xB.fx=1x2C.fx=x2−1+1−x2D.
2、fx=12x2+1,x>0−12x2−1,x<06.设a,b是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①如果a∥α,b∥α,那么a∥b;②如果a∥β,a⊂α,b⊂β,那么a∥b;③如果α⊥β,a⊂α,那么a⊥β;④如果a⊥β,a∥b,b⊂α,那么α⊥β.其中正确命题的序号是 A.①B.②C.③D.④7.两个球的体积之比为8:27,那么这两个球的表面积之比为 A.2:3B.4:9C.2:3D.8:278.已知函数fx=4x2−kx−8在5,20上是单调递减函数,则实数k的取值范围是 A.−∞,40B.160,+∞C.40,160D.−∞,4
3、0∪160,+∞9.圆C1:x2+y2+2x+8y−8=0与圆C2:x2+y2−4x+4y−2=0的位置关系是 A.相离B.外切C.内切D.相交第8页(共8页)10.已知函数fx是R上的增函数,A0,−1,B3,1是其图象上的两点,那么∣f−2x+1∣<1的解集的补集为 A.−1,12B.−5,1C.−∞,−1∪12,+∞D.−∞,−5∪1,+∞11.设点A2,−3,B−3,−2,直线l过点P1,1且与线段AB相交,则l的斜率k的取值范围 A.k≥34或k≤−4B.34≤k≤4C.−4≤k≤34D.k≥4或k≤−3412.函数fx满足对于任意实数x,都有f
4、−x=fx,且当x1,x2∈0,+∞,x1≠x2时,fx1−fx2x1−x2>0都成立,则下列结论正确的是 A.f−2>f0>f1B.f−2>f1>f0C.f1>f0>f−2D.f1>f−2>f0二、填空题(共4小题;共20分)13.已知函数fx=3x,x>0−x13,x≤0,那么flog34的值为 .14.过点0,1且与直线2x−y=0垂直的直线方程的一般式是 .15.已知A−2,0,B2,0,点P在圆x−32+y−42=4上运动,则|PA|2+|PB|2的最小值是 .16.在直角梯形ABCD中,AD∥BC,AB=1,AD=3,AB⊥BC,CD⊥BD,如图(
5、1)把△ABD沿BD翻折,使得平面AʹBD⊥平面BCD,如图(2),则三棱锥Aʹ−BDC的体积为 .三、解答题(共6小题;共78分)17.已知函数fx=x2−2∣x∣.(1)判断并证明函数fx的奇偶性;(2)判断函数fx在1,+∞上的单调性,并解不等式f∣a∣+32>0.18.已知两点O0,0,A6,0,圆C以线段OA为直径.第8页(共8页)(1)求圆C的方程;(2)若直线l1的方程为x−2y+4=0,直线l2平行于l1,且被圆C截得的弦MN的长是4,求直线l2的方程.19.如图:已知四棱锥P−ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求
6、证:(1)PC∥平面EBD(2)平面PBC⊥平面PCD20.已知函数fx=a2x−2ax+1+2a>0,a≠1的定义域为x∈−1,+∞.(1)若a=2,求y=fx的最小值;(2)当07、=f4.(1)求实数a,b的值;第8页(共8页)(2)若x∈2,+∞,函数fx的图象上是否存在不同的两点,使过这两点的直线平行于x轴,请说明理由!(3)是否存在实数同时满足以下两个条件:①不等式fx+k2>0对x∈0,+∞恒成立,②方程fx=k在x∈−8,−1上有解.若存在,求出实数k的取值范围,若不存在,请说明理由.第8页(共8页)答案第一部分1.C2.B3.B4.B【解析】由x−y+3=0,得y=x+3,其斜率为1,倾斜角为45∘.5.C6.D7.B8.B9.D【解析】圆C1:x2+y2+2x+8y−8=0即x+12+y+42=25,表示以A−1,−4为圆心
8、,以5为半径的圆.C2: