重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc

重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc

ID:31843346

大小:253.50 KB

页数:8页

时间:2019-01-21

重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc_第1页
重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc_第2页
重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc_第3页
重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc_第4页
重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc_第5页
资源描述:

《重庆市2017届中考数学一轮复习《1.1实数》讲解(含答案).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、www.12999.com12999数学网第一章数与式第一节实数课标呈现指引方向1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道的含义(这里a表示有理数).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).(4)理解有理数的运算律,能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.(2)了解乘方与开方互为逆运算,会用平方运算求

2、百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.(6)会用科学记数法表示数(包括在计算器上表示).考点梳理夯实基础1.实数(1)实数的定义:有理数和无理数统称窦数(2)实数的分类①按定义分类②按正负性质分类www.12999.com12999数学网www.12999.com12999数学网注:无理数的三种常见形式:①

3、开方开不尽的数,②无限不循环小数,③含有的数.2.实数的相关概念(1)数轴是一条规定了_______、________、______单位长度的直线,并且数轴上的点与实数是_____的关系.【答案】原点、正方向、单位长度、一一对应(2)若a和b互为相反数,则a、b满足的关系式为_______,此时a、b在数轴上表示的点位于原点_____,且到原点的_____相等.2-1-c-n-j-y【答案】a+b=0、两侧、距离(3)若ab=______,则a,b互为倒数;若ab=____,则a,b互为负倒数:_____没有倒数.【答案】1,-1,0(4)绝对值的几何意义:一个数的绝对值就是数轴上

4、表示这个数的点到____的距离.【答案】原点(5)绝对值的代数意义(6)相反数等于本身的数是____,倒数等于本身的数_____;绝对值等于本身的数是____;平方等于本身的数_________;立方等于本身的数_______.【答案】0;;所有非负数;0,1;0,(7)对于一个绝对值比较大(或绝对值比较小)的数常用科学记数法表示,记为______的形式,其中._________.【答案】,且n为整数3.数的开方(1)如果一个数的____等于a,那么这个数就叫做a的_____,记怍(二次方根).一个正数有____个平方根,它们互为_____,零的平方根是______,负数____平

5、方根.【答案】平方;平方根;两;相反数;0;没有(2)如果一个正数的平方等于a,那么这个正数就叫做a的______,记作____,0的算术平方根是_____.【答案】算术平方根;;0(3)如果一个数的立方等于a,那么这个数就叫做a的_____(或三次方根),符号记作.每个数只有_____个立方根,正数的立方根是_____,负数的立方根是_____,0www.12999.com12999数学网www.12999.com12999数学网的立方根是_____.【答案】立方根;1;正数负数0(4)平方根等于本身的数是____;算术平方根等于本身的数是_____;立方根等于本身的数是____

6、.【答案】0;0,1;4.实数大小比较的常用方法:(1)在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数大.(2)正数都大于零,负数都小于零,正数大于一切负数,两个负数比较,绝对值大的反而小.(3)作差比较法①a-b>0a>b②a-b=0a=6③a-b<0ab②=1a=b③0,b>0,则a0,b>0且a2>b2,则a>b.5.非负数的性质(1)几种常见的非负数:①

7、a

8、≥0;②≥0(a≥0);③a2n≥0.(2)非负数的性质:①非负数的最小值是0:②几个非负数之和仍

9、为非负数:③若几个非负数的和为0,则每个非负数都为0.6.零指数幂和负整数指数幂(1)零指数幂:a0=l(a≠0).(2)负整数指数幂:a-p(a≠0,p为整数).实数的相关概念【例l】(1)(2016重庆)4的倒数是(D)A.-4B.4C.D.【答案】D(2)(2016重庆)在实数-2,2,0.-1中,最小的数是()A.-2B.2C.0D.-l【答案】Awww.12999.com12999数学网www.12999.com12999数学网(3)(2016烟台)下列实数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。