欢迎来到天天文库
浏览记录
ID:31838408
大小:64.50 KB
页数:3页
时间:2019-01-20
《沪科版八年级下《17.1一元二次方程》教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、17.1 一元二次方程学习目标1.了解一元二次方程及相关概念;(重点)2.能根据具体问题的数量关系,建立方程的模型.(难点) 教学过程一、情境导入一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.所列方程是否为一元一次方程?(这个方程便是即将学习的一元二次方程.)二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列方程中,是一元二次方程的是________(填入序号即可).①-y
2、=0;②2x2-x-3=0;③=3;④x2=2+3x;⑤x3-x+4=0;⑥t2=2;⑦x2+3x-=0;⑧=2.解析:由一元二次方程的定义知③⑤⑦⑧不是.答案为①②④⑥.方法总结:判断一个方程是不是一元二次方程,先看它是不是整式方程,若是,再对它进行整理,若能整理为ax2+bx+c=0(a,b,c为常数,a≠0)的形式,则这个方程就是一元二次方程.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据一元二次方程的概念求字母的值a为何值时,下列方程为一元二次方程?(1)ax2-x=2x
3、2-ax-3;(2)(a-1)x
4、a
5、+1+2x-7=0.解析:(1)将方程转化为一般形式,得(a-2)x2+(a-1)x+3=0,当a-2≠0,即a≠2时,原方程是一元二次方程;(2)由
6、a
7、+1=2,且a-1≠0知,当a=-1时,原方程是一元二次方程.解:(1)将方程整理得(a-2)x2+(a-1)x+3=0,∵a-2≠0,∴a≠2.当a≠2时,原方程为一元二次方程;(2)∵
8、a
9、+1=2,∴a=±1.当a=1时,a-1=0,不合题意,舍去.∴当a=-1时,原方程为一元二次方程.第3页共3页方法总
10、结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】一元二次方程的一般形式把下列方程转化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项.(1)x(x-2)=4x2-3x;(2)-=;(3)关于x的方程mx2-nx+mx+nx2=q-p(m+n≠0).解析:首先对上述三个方程进行整理,通过“去分母”“去括号”“移项”“合并同类项”等步骤将它们化为一
11、般形式,再分别指出二次项系数、一次项系数和常数项.解:(1)去括号,得x2-2x=4x2-3x.移项、合并同类项,得3x2-x=0.二次项系数为3,一次项系数为-1,常数项为0;(2)去分母,得2x2-3(x+1)=3(-x-1).去括号、移项、合并同类项,得2x2=0.二次项系数为2,一次项系数为0,常数项为0;(3)移项、合并同类项,得(m+n)x2+(m-n)x+p-q=0.二次项系数为m+n,一次项系数为m-n,常数项为p-q.方法总结:(1)在确定一元二次方程各项系数时,首先把一元二次方程转
12、化成一般形式,如果在一般形式中二次项系数为负,那么最好在方程左右两边同乘-1,使二次项系数变为正数;(2)指出一元二次方程的各项系数时,一定要带上前面的符号;(3)一元二次方程转化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项c,则c=0.变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点二:根据实际问题建立一元二次方程模型如图,现有一张长为19cm,宽为15cm的长方形纸片,需要在四个顶角处剪去边长是多少的小正方形,才能将其做成底面积为81cm2的无盖长方体纸盒?请根据题意
13、列出方程.解析:小正方形的边长即为纸盒的高,中间虚线部分则为纸盒底面,设出未知数,利用长方形面积公式可列出方程.解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.根据题意,得(19-2x)(15-2x)=81.整理得x2-17x+51=0(014、》本课时练习“课堂达标训练”第7题探究点三:一元二次方程的根第3页共3页已知关于x的一元二次方程x2+mx+3=0的一个解是x=1,求m的值.解析:将方程的解代入原方程,可使方程的左右两边相等.本题将x=1代入原方程,可得关于m的一元一次方程,解得m的值即可.解:根据方程的解的定义,将x=1代入原方程,得12+m×1+3=0,解得m=-4,即m的值为-4.方法总结:方程的根(解)一定满足原方程,将根(解)的值代入原方程,即可得到关于未知系数的方程,通过解
14、》本课时练习“课堂达标训练”第7题探究点三:一元二次方程的根第3页共3页已知关于x的一元二次方程x2+mx+3=0的一个解是x=1,求m的值.解析:将方程的解代入原方程,可使方程的左右两边相等.本题将x=1代入原方程,可得关于m的一元一次方程,解得m的值即可.解:根据方程的解的定义,将x=1代入原方程,得12+m×1+3=0,解得m=-4,即m的值为-4.方法总结:方程的根(解)一定满足原方程,将根(解)的值代入原方程,即可得到关于未知系数的方程,通过解
此文档下载收益归作者所有