欢迎来到天天文库
浏览记录
ID:31769306
大小:58.47 KB
页数:5页
时间:2019-01-18
《探索规律中一类求和问题的解法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、探索规律中一类求和问题的解法同学们一定知道德国有一个数学神童,在他十岁时,小学老师出了一道算术难题:“计算1+2+3+……+100=?”.这可难为初学算术的学生,但是他却在几秒后将答案解了出来,他把数目一对对的凑在一起:1+100,2+99,3+98,……,49+52,50+51而这样的组合有50组,所以答案很快的就可以求出是:101X50=5050.我想现在同学们一定想起他是谁了吧?他就是德国的大数学家高斯(Gauss,1777-1855),他和阿基米德、牛顿、欧拉并列,有“数学王子”之称•有很多题目都与高斯做的这个求和题类似,现在,就让我们来共同探索一下其中的规律.一、规律
2、总结如果我们把高斯解的这个题一般化,那就是求1+2+3+……+n的和,把这组和首尾的数字对应相加,就可以得到个,所以1+2+3++n=.我们还可以假设S=l+2+3+……+n,再倒过来写一遍就是S=n+(n—1)++1,两式相加可以得到2S二+++=n两边同时除以2得用类似的方法我们也可以求出:1+2+3+……+二.上面两个公式同学们可以记住,计算时不妨直接应用,这样我们在探索规律时就可以把主要精力放在思考问题上,而不是花费在复杂的计算上.二、典型例题例1足球比赛时要进行单循环的淘汰赛,2个球队要进行1场比赛,3个球队要进行3场比赛,4个球队要进行6场比赛,……,n+1个球队要
3、进行多少场比赛?解析:假设n+1个球队进行的比赛场数为S,则可以得到球队数比赛场数13=1+26=1+2+323410=1+2+3+415二1+2+3+4+5由规律可以得到n+1个球队需要进行的比赛场数为S二1+2+3++n=.例2在一条直线上有n个点Al,A2……An-1,An.这n个点一共可以构成多少条线段?解析:点A1和点A2可以构成线段A1A2,点A1和点A3可以构成线段A1A3,……,点A1和点An可以构成线段AlAn,一共是条;点A2和点A3,点A2和点A4,……,点A2和点An,可以构成的线段一共有条,依次类推,n个点可以构成的线段有:+++2+1=评注:例1中的
4、球队我们也可以把它看作一个一个线段上的点,按照例2那样用画弧的方法,一边画弧,一边按照例1那样记数,很快就能找到答案的!其实,只要大家能够灵活运用所掌握的方法,探索规律的题目也是很简单的!例3我们知道1条可以将一个平面分成2部分,2条直线可以将一个平面分成4部分,3条直线最多可以将一个平面分成7部分,4条直线最多可以将一个平面分成11部分,你能探索出n条直线最多可以将一个平面分成几部分吗?解析:直线条数分成的平面部分12342=1+14=(1+2)+17二(1+2+3)+111二(1+2+3+4)+1n例4如图S二(1+2+3++n)+1二+1图形编号①②③④⑤三角形边数
此文档下载收益归作者所有