欢迎来到天天文库
浏览记录
ID:31747796
大小:185.00 KB
页数:5页
时间:2019-01-17
《21.1 二次根式(2).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、21.1二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).教学
2、过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出-5-(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方
3、根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1计算1.()22.(3)23.()24.()2分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2=,(3)2=32·()2=32·5=45,()2=,()2=.三、巩固练习计算下列各式的值:()2()2()2()2(4)2-5-四、应用拓展例2计算1.()2(x≥0)2.()23.()24.()2分析:(1)因为x≥0,所以x
4、+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0
5、,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3(2)x4-4(3)2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P97.-5-2.选用课时作业设计.第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是().A.4B.3C.2D.12.数a没有算术平方根,则a的取值范围是().A.a>0B.a≥0C.a<0D.a=0二、填空
6、题1.(-)2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2(2)-()2(3)()2(4)(-3)2(5)2.把下列非负数写成一个数的平方的形式:(1)5(2)3.4(3)(4)x(x≥0)3.已知+=0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2(2)x4-93x2-5第二课时作业设计答案:一、1.B2.C二、1.32.非负数三、1.(1)()2=9(2)-()2=-3(3)()2=×6=-5-(4)(-3)2=9×=6(5)-
7、62.(1)5=()2(2)3.4=()2(3)=()2(4)x=()2(x≥0)3.xy=34=814.(1)x2-2=(x+)(x-)(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-)(3)略-5-
此文档下载收益归作者所有