欢迎来到天天文库
浏览记录
ID:31730104
大小:1.33 MB
页数:10页
时间:2019-01-17
《第4章根轨迹分析法参考答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、习题4.1已知下列负反馈的开环传递函数,应画零度根轨迹的是:(A)ABCD4.2若两个系统的根轨迹相同,则有相同的:(A)A闭环零点和极点B开环零点C闭环极点D阶跃响应4.3己知单位负反馈控制系统的开环传递函数为(1)绘制系统的根轨迹图();(2)求系统临界稳定时的值与系统的闭环极点。解:系统有三个开环极点分别为、、。系统有3条根轨迹分支,分别起始于开环极点,并沿渐进线终止于无穷远。实轴上的根轨迹区段为、。根轨迹的渐近线与实轴交点和夹角分别为,求分离点方程为经整理得,解方程得到、。显然分离点位于实轴上
2、间,故取。求根轨迹与虚轴交点,系统闭环特征方程为令,然后代入特征方程中,令实部与虚部方程为零,则有解之得、显然第一组解是根轨迹的起点,故舍去。根轨迹与虚轴的交点为,对应的根轨迹增益为临界根轨迹增益。根轨迹与虚轴的交点为临界稳定的2个闭环极点,第三个闭环极点可由根之和法则求得解之得。即当时,闭环系统的3个特征根分别为、、。系统根轨迹如图4.1所示。图4.1题4.3所示系统根轨迹图4.4系统结构如下图所示绘制系统的根轨迹(),并确定系统欠阻尼状态下的值。解:系统闭环传递函数为。特征方程为。等效开环传递函数
3、为。系统有2条根轨迹分支,起始于开环极点,1条终止于开环零点,另一条沿渐进线终止于无穷远。实轴上的根轨迹区段为。根轨迹的渐近线与实轴交点和夹角分别为,实轴上分离点方程为。解方程得到、(弃去),对应。根轨迹与虚轴在有限范围内无交点,根轨迹如图4.2所示。图4.2题4.4所示系统根轨迹图由根轨迹可知当时,系统有两个闭环极点,为欠阻尼响应。4.5已知负反馈控制系统的闭环特征方程为(1)绘制系统的根轨迹();(2)确定使复数闭环主导极点的阻尼系数的值。解:系统开环传递函数为开环极点为、。 实轴上根轨迹区段为。
4、 根轨迹的渐近线与实轴交点和夹角分别为,实轴上分离点方程为,解之得。求与虚轴交点,闭环特征方程为。令,然后代入特征方程中,令实部与虚部方程为零,则有,解得。因,故,作过原点与负实轴夹角为的直线,在s上半平面交P、Q两点,如图4.3所示。P点坐标为,则对应图4.3题4.5所示系统根轨迹图4.6已知单位反馈系统的开环传递函数为(1)绘出由变化时系统的根轨迹(根轨迹的分离点、渐近线、与虚轴交点的数值要求精确算出)。(2)用根轨迹法分析:能否通过调整使系统的阶跃响应超调量,为什么?(3)能否通过调整使系统的静
5、态误差系数,为什么?解:系统开环传递函数为化成根轨迹形式为,其中。(1)开环极点为、、。实轴上根轨迹区段为、。根轨迹的渐近线与实轴交点和夹角分别为,实轴上分离点方程为,解出、(弃去)。求与虚轴交点,闭环特征方程为令,然后代入特征方程中,令实部与虚部方程为零,则有解得。做出根轨迹如图4.4所示。图4.4题4.6所示系统根轨迹图(2)当时,即,或。作过原点与负实轴夹角为的直线,与根轨迹有交点为P、Q两点,如图3.35所示。P点坐标为,使用幅值条件计算此点对应的,即(3)从根轨迹曲线可知,当即,系统是不稳定
6、的,故无法通过调整使系统的静态误差系数。4.7应用根轨迹法确定下图所示系统在阶跃信号作用下无超调响应的值范围。解:系统开环传递函数为,化成根轨迹形式为,其中。系统开环极点为、,开环零点为。 实轴上根轨迹区段为、。 渐近线与实轴的夹角为实轴上分离点方程为,解出、,根轨迹如图4.5所示。图4.5题4.7所示系统根轨迹图系统无超调即特征根全部为负实数,从根轨迹图中看出,分离点与会和点为临界点,需求出此两点所对应的值。系统的特征方程为分别将、代入上式可解得、。由此求得系统无超调响应的值范围是、4.8设正反馈系
7、统的开环传递函数为画出变化时系统的根轨迹.解:开环极点为、,开环零点为。 实轴上根轨迹区段为、。 渐近线与实轴的夹角为实轴上分离点方程为,解出、。其中是根轨迹上的分离点。出射角方程为处的分离角方程为当;当,即处的分离角为、。处的会合角方程为当;当,即处的会合角为。根轨迹与虚轴交点为,根轨迹如图4.5所示。图4.6题4.8所示系统根轨迹图4.9设单位反馈系统的开环传递函数为画出变化时系统的根轨迹。解:系统的特征方程为。对上式变换为。等效闭环传递函数为。等效开环传递函数为,其中。可知该系统根轨迹应使用根轨
8、迹绘制方法。渐近线与实轴的夹角为,解之得。实轴上的根轨迹为、。分离点为方程为,解之得、,代入到特征方程中得到与。由劳斯判据得到与虚轴交点为,对应,。根轨迹如图4.7所示。图4.7题4.9所示系统根轨迹图4.10由题4.9所示的根轨迹求出系统处于临界稳定和临界阻尼时的值;以及当时,闭环系统的单位阶跃响应。临界稳定点,即为根轨迹与虚轴交点,对应,。临界阻尼点,即为根轨迹的分离点与会和点,将、代入等效开环传递函数后,使用幅值条件得、,对应、。时,系统的闭环传递
此文档下载收益归作者所有