欢迎来到天天文库
浏览记录
ID:31634102
大小:442.50 KB
页数:9页
时间:2019-01-16
《新人教版八年下《17.1反比例函数》word教案(3课时全).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、17.1反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念[2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。教材第47页的例1是一道用待定系数法求反比例函数解析式的
2、题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?五、例习题分析例1.见教材P47分析:因为y是x的反比例函数,所以先设,再把x=2
3、和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。例1.(补充)下列等式中,哪些是反比例函数(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m取什么值时,函数是反比例函数?分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条
4、件,也要防止出现3-m2=1的错误。解得m=-2例3.(补充)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5(1)求y与x的函数关系式(2)当x=-2时,求函数y的值分析:此题函数y是由y1和y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、y2与x的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意y1与x和y2与x的函数关系中的比例系数不一定相同,故不能都设为k,要用不同的字母表示略解:设y1=k1x(k1≠0),(k2≠0),则,代入数值求得k1=2,k2=2,则,当x=-2时,y=-5六
5、、随堂练习1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为2.若函数是反比例函数,则m的取值是3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是,当x=-3时,y=5.函数中自变量x的取值范围是七、课后练习已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值[答案:y=4课后反思:17.1反比例函数17.1.2反比例函数的图象和性质(1)一、教学目标1.会用描点法画反比例函数的图象2.结
6、合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1.重点:理解并掌握反比例函数的图象和性质[2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质三、例题的意图分析教材第48页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。补充例2是一道典型题,是关于反比例函数图象
7、与矩形面积的问题,要让学生理解并掌握反比例函数解析式(k≠0)中的几何意义。四、课堂引入提出问题:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?五、例习题分析例2.见教材P48,用描点法画图,注意强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取
此文档下载收益归作者所有