欢迎来到天天文库
浏览记录
ID:31600666
大小:288.50 KB
页数:5页
时间:2019-01-15
《2013新人教A版(选修1-2)3.2《复数代数形式的四则运算》word教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、复数代数形式的四则运算(教学设计)(1)§3.2.1复数代数形式的加减运算及几何意义教学目标:知识与技能目标:掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义过程与方法目标:培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力。情感、态度与价值观目标:培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。教学重点:复数代数形式析加法、减法的运算法则。教学难点:复数加减法运算的几何意义。
2、教学过程:一、复习回顾:1、复数集C和复平面内所有的点所成的集合是一一对应关系,即复数复平面内的点这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法2、.若,,则,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3、若,,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 =-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1)二、师生互动、新课讲解:1、复数代数形式的加减运算(1)复数z1
3、与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.(2)复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.(3)复数的加法运算满足交换律:z1+z2=z2+z1.证明:设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R).∵z1+z2=(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i.z2+z1=(a2+b2i)+(a1+b1i)=(a2+a1)+(b2+b1)i.又∵a1+a2=a2+a1,b1+b2=b2+b1.∴z1+z2=
4、z2+z1.即复数的加法运算满足交换律.(4)复数的加法运算满足结合律:(z1+z2)+z3=z1+(z2+z3)证明:设z1=a1+b1i.z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).∵(z1+z2)+z3=[(a1+b1i)+(a2+b2i)]+(a3+b3i)=[(a1+a2)+(b1+b2)i]+(a3+b3)i=[(a1+a2)+a3]+[(b1+b2)+b3]i=(a1+a2+a3)+(b1+b2+b3)i.z1+(z2+z3)=(a1+b1i)+[(a2+b2i)+(a3+b3i)]=(a1
5、+b1i)+[(a2+a3)+(b2+b3)i]=[a1+(a2+a3)]+[b1+(b2+b3)]i=(a1+a2+a3)+(b1+b2+b3)i∵(a1+a2)+a3=a1+(a2+a3),(b1+b2)+b3=b1+(b2+b3).∴(z1+z2)+z3=z1+(z2+z3).即复数的加法运算满足结合律讲解范例:例1(课本P57例1)计算:(5-6i)+(-2-i)-(3+4i)解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4)i=-11i例2计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+
6、…+(-2002+2003i)+(2003-2004i)解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.解法二:∵(1-2i)+(-2+3i)=-1+i,(3-4i)+(-4+5i)=-1+i,……(2001-2002i)+(-2002+2003)i=-1+i.相加得(共有1001个式子):原式=1001(-1+i)+(2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i2
7、.复数代数形式的加减运算的几何意义复数的加(减)法(a+bi)±(c+di)=(a±c)+(b±d)i.与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减).(1)复平面内的点平面向量(2)复数平面向量(3)复数加法的几何意义:设复数z1=a+bi,z2=c+di,在复平面上所对应的向量为、,即、的坐标形式为=(a,b),=(c,d)以、为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量是,∴=+=(a,b)+(c,d)=(a+c,b+d)=(a+c)+(b+d)i(4)复数减法的几何意义:复数减法是加法的逆运算,
8、设z=(a-c)+(b-d)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,为一条边画平行四边形,那么这个平行四边形的另一边OZ2所表示
此文档下载收益归作者所有