线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版

线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版

ID:31588021

大小:2.32 MB

页数:30页

时间:2019-01-14

线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第1页
线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第2页
线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第3页
线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第4页
线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第5页
资源描述:

《线线、线面、面面的位置关系-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【考点剖析】1.命题方向预测:1.点、线、面的位置关系是本节的重点,也是高考的热点.以考查点、线、面的位置关系为主.2.线面平行、面面平行的判定及性质是命题的热点.着重考查线线、线面、面面平行的转化及应用,同时考查逻辑推理能力与空间想象能力.3.线线、线面、面面垂直的问题是命题的热点.着重考查垂直关系的转化及应用,同时考查逻辑推理能力与空间想象能力.4.线线、线面、面面的位置关系问题,往往是平行、垂直关系综合考查,题型有选择题、填空题及解答题.难度中、低档题兼有.2.课本结论总结:1.平面的基本性质公理1:如果一条直线上的两点在一个

2、平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角).②范围:.3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.公理4平行于同一条直线的两条直线互相平行.6.定理

3、空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.7.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥ba∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b8.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥ba∥α9.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.③推论:如果在两条

4、平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.10.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.11.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.12.二面角的有关概念(1)二面角:从一条直线出发的

5、两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.3.名师二级结论:(1)异面直线的判定方法:判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.(2)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(3)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(4)公理3的作用:①判定两

6、平面相交;②作两平面相交的交线;③证明多点共线.(5)平行问题的转化关系:(6)垂直问题的转化关系线线垂直线面垂直面面垂直性质(7)证明直线相交,通常用平面的基本性质,平面图形的性质等;(8)利用公理4或平行四边形的性质证明两条直线平行.4.考点交汇展示:(1)立体几何与函数交汇【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△

7、ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】(2)立体几何与基本不等式交汇如图,在三棱锥中,.(1)求证:平面平面;(2)若,,当三棱锥的体积最大时,求的长.PABC【答案】(1)证明见解析;(2)当三棱锥的体积最大时,.(2)方法1:由已知及(1)所证可知,平面,,所以是三棱锥的高.……………………………7分因为,,设,……………8分所以.…………9分因为………………………………………………………………………10分……………………

8、……………………………………………………11分.…………………………………………………………………………………………12分当且仅当,即时等号成立.………………………………………………………13分所以当三棱锥的体积最大时,.………………

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。