线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版

线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版

ID:31587757

大小:1.40 MB

页数:19页

时间:2019-01-14

线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第1页
线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第2页
线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第3页
线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第4页
线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版_第5页
资源描述:

《线性规划-2019届高考数学(理)提分必备30个黄金考点---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【考点剖析】1.命题方向预测:预计2019年高考对本节内容的考查仍将以求目标函数最值(或取值范围)为主,考查约束条件、目标函数中的参变量取值范围,题型延续选择题或填空题的形式,分值为4到5分.2.课本结论总结:画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化,确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法,直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线,特殊点定域,即在直线的某一侧取一个特殊点作为测试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表

2、示直线的另一侧.特别地,当时,常把原点作为测试点;当时,常选点或者作为测试点;线性规划的综合运用问题,通常会考查一些非线性目标函数的最值,解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.3.名师二级结论:(1)平面区域的画法:线定界、点定域(注意实虚线).(2)求最值:求二元一次函数的最值,将函数转化为直线的斜截式:,通过求直线的截距的最值间接求出的最值.最优解在顶点或边界取得.(3)解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.

3、考点交汇展示:(1)线性规划与基本不等式相结合设为坐标原点,第一象限内的点的坐标满足约束条件,,若的最大值为40,则的最小值为()A.B.C.1D.4【答案】B(2)线性规划与平面向量相结合【山东省烟台市2018届适应性练习(二)】设满足约束条件,向量,则满足的实数的最小值为()A.B.C.D.【答案】B解得,的实数m的最小值为:.故选:B.【考点分类】考向一求目标函数的最值1.【2018年浙江卷】若满足约束条件则的最小值是___________,最大值是___________.【答案】(1).-2(2).8【解析】2.【2018年理北京卷】若?

4、,y满足,则2y−?的最小值是_________.【答案】3【解析】不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.3.【2018河南洛阳联考】已知,满足条件则的取值范围是__________.【答案】【解析】作出可行域:故答案为:[3,9].4.【2018广西南宁三中、柳铁一中、玉林高中联考】设满足约束条件,则的最大值为________.【答案】【解析】不等式组表示的平面区域如图阴影所示,【解题技巧】求约束条件下的二元函数的最值是典型的线性规划问题,求解这类问题时,目标函数所对

5、应的直线的截距十分关键,即把目标函数中的看作直线在轴上的截距,其中的符号要特别小心:当时,直线过可行域且在轴上截距最大时,值最大,在轴上的截距最小时,值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上的截距最小时,值最大,例如第1题,利用平移的方法,考查直线在可行域内在轴上的截距,即可求得最值.【方法规律】把每一个二元一次不等式所表示的平面区域在平面中准确地表示出来,然后求交集,就是不等式组所表示的平面区域,但要注意是否包括边界,求目标函数的最大值或最小值,必须先画出准确的可行域,作出目标函数的等值线,根据题意,确定取得最优解的点,从而

6、求出最值.考向二与其它知识点交汇1.【河南省2018年高考一模】设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为  A.B.C.D.【答案】A【解析】2.【2018届浙江省“七彩阳光”联盟高三上期初联考】已知变量满足约束条件,若不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】作出约束条件所对应的可行域(如图中阴影部分),令,当直线经过点时,取得最大值,即,所以,故选D.3.【2018湖北浠水实验高级中模拟】设,满足不等式组,若的最大值为,最小值为,则实数的取值范围为__________.【答案】【解

7、析】由得,直线是斜率为−a,y轴上的截距为z的直线,即,若,则目标函数斜率,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足,即,综上,故答案为:[−2,1].4.【2018陕西西安西北工业大学附属中学模拟】若平面区域,夹在两条斜率为1的平行直线之间,则这条平行直线间的距离的最小值是()A.B.C.D.【答案】D【解析】作出平面区域如图所示:两条平行线分别为y=x−1,y=x+1,即x−y−1=0,x−y+1=0.∴平行线间的距离为,本题选择D选项.【方法规律】与二元一次不等式(组)表示的平面区域有关的范围、最值、距离等问题的

8、求解一般是结合给定代数式的几何意义来完成的,常见代数式的几何意义:(1)表示点到原点的距离;(2)表示点与点的距离;(3)表示点与原点连

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。