欢迎来到天天文库
浏览记录
ID:31587865
大小:3.19 MB
页数:24页
时间:2019-01-14
《导数的应用(单调性最值极值)高考数学(文)提分必备30个黄金考点---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【考点剖析】1.命题方向预测:1.利用导数研究函数的单调性、极值是近几年高考的热点.考查的形式有两种,一是直接考查单调性、极值,二是在研究函数零点、不等式证明中间接考查单调性、极值等.2.选择题、填空题侧重于考查导数的运算及导数的几何意义,解答题侧重于利用导数研究函数的单调性、极值、最值等,往往与函数方程、不等式、数列、解析几何等交汇命题,一般难度较大.3.利用导数解决生活中的最优化问题,近几年也有考查.2.课本结论总结:1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(
2、x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函
3、数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.4.利用导数解决生活中的优化问
4、题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.5.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.3.名师二级结论:1.f′(x)>0是f(x)为增函数的充分不必要条件.2.函
5、数在某区间上或定义域内极大值不是唯一的.3.函数的极大值不一定比极小值大.4.对可导函数f(x),f′(x0)=0是x0点为极值点的既不充分也不必要条件.5.函数的最大值不一定是极大值,函数的最小值也不一定是极小值.6.可导函数极值存在的条件:(1)可导函数的极值点x0一定满足f′(x0)=0,但当f′(x1)=0时,x1不一定是极值点.如f(x)=x3,f′(0)=0,但x=0不是极值点.(2)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.7.函数的最大值、最小值是比较
6、整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.8.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.4.考点交汇展示:(1)导数与三角函数交汇例1.【2018年理新课标I卷】已知函数,则的最小值是_____________.【答案】例2.【2018年江苏卷】某农场有一块农田,如图
7、所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面
8、积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的
此文档下载收益归作者所有