高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理

高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理

ID:31544060

大小:506.50 KB

页数:9页

时间:2019-01-13

高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理_第1页
高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理_第2页
高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理_第3页
高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理_第4页
高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理_第5页
资源描述:

《高考数学二轮复习 第1部分 重点强化专题 专题2 数列 第3讲 等差数列、等比数列教学案 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3讲 等差数列、等比数列题型1 等差、等比数列的基本运算(对应学生用书第8页)■核心知识储备………………………………………………………………………·1.等差数列的通项公式及前n项和公式an=a1+(n-1)d;Sn==na1+d.2.等比数列的通项公式及前n项和公式an=a1qn-1(q≠0);Sn==(q≠1).■典题试解寻法………………………………………………………………………·【典题1】 (考查等比数列的基本量运算)设等比数列{an}的前n项和为Sn,若Sm-1=5,Sm=-11,Sm+1=21,则m=(  )A.3    B.4    C.5    

2、D.6[解析] ∵Sm-1=5,Sm=-11,Sm+1=21,∴am=Sm-Sm-1=-16,am+1=Sm+1-Sm=32.∴q==-2.又Sm==-11,am+1=a1(-2)m=32,∴a1=-1,m=5.[答案] C【典题2】 (考查等差(比)数列的通项与求和)(2016·全国Ⅰ卷)已知{an非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(1)求{an}的

3、通项公式;(2)求{bn}的前n项和.【导学号:07804019】[解] (1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2.所以数列{an}是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)知anbn+1+bn+1=nbn,得bn+1=,因此{bn}是首项为1,公比为的等比数列.记{bn}的前n项和为Sn,则Sn==-.[类题通法]在等差(比)数列问题中最基本的量是首项a1和公差d(公比q),在解题时往往根据已知条件建立关于这两个量的方程组,从而求出这两个量,其他问题也就会迎刃而解.这就是解决等差、等比数列问题的基本量的方

4、法,这其中蕴含着方程的思想.提醒:应用等比数列前n项和公式时,务必注意公比q的取值范围.■对点即时训练………………………………………………………………………·1.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为(  )A.升    B.升    C.升    D.升A [自上而下依次设各节竹子的容积分别为a1,a2,…,a9,依题意有,因为a2+a3=

5、a1+a4,a7+a9=2a8,故a2+a3+a8=+=.选A.]2.已知数列{an}为等差数列,其中a2+a3=8,a5=3a2.(1)求数列{an}的通项公式;(2)数列{bn}中,b1=1,b2=2,从数列{an}中取出第bn项记为cn,若{cn}是等比数列,求{bn}的前n项和.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。[解] (1)设等差数列{an}的公差为d,依题意有,解得a1=1,d=2,从而{an}的通项公式为an=2n-1,n∈N

6、*.(2)c1=ab1=a1=1,c2=ab2=a2=3,从而等比数列{cn}的公比为3,因此cn=1×3n-1=3n-1.另一方面,cn=abn=2bn-1,所以2bn-1=3n-1,因此bn=.记{bn}的前n项和为Sn,则Sn==.■题型强化集训………………………………………………………………………·(见专题限时集训T1、T4、T5、T9、T12、T13)题型2 等差、等比数列的基本性质(对应学生用书第9页)■核心知识储备………………………………………………………………………·1.若m,n,p,q∈N*,m+n=p+q,则在等差数列中am+an=ap+a

7、q,在等比数列中,am·an=ap·aq.2.若{an},{bn}均是等差数列,Sn是{an}的前n项和,则{man+kbn},仍为等差数列,其中m,k为常数.3.若{an},{bn}均是等比数列,则{can}(c≠0),{

8、an

9、},{an·bn},{manbn}(m为常数,m≠0),{a},仍为等比数列.4.(1)等比数列(q≠-1)中连续k项的和成等比数列,即Sk,S2k-Sk,S3k-S2k,…成等比数列,其公比为qk.(2)等差数列中连续k项的和成等差数列,即Sk,S2k-Sk,S3k-S2k,…成等差数列,公差为k2d.5.若A2n-1,B2n-1

10、分别为等差数列{an},{bn}的前2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。