浅谈数学思想在课堂教学中的渗透

浅谈数学思想在课堂教学中的渗透

ID:31498896

大小:103.50 KB

页数:4页

时间:2019-01-12

浅谈数学思想在课堂教学中的渗透_第1页
浅谈数学思想在课堂教学中的渗透_第2页
浅谈数学思想在课堂教学中的渗透_第3页
浅谈数学思想在课堂教学中的渗透_第4页
资源描述:

《浅谈数学思想在课堂教学中的渗透》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈数学思想在课堂教学中的渗透  摘要:新课标提出知识与技能、过程与方法、情感态度与价值观的三维目标。在数学课堂上传授数学知识,教会学生运用数学方法解决数学问题,是教学目标的基本要求。笔者认为,学生在学会课堂知识的基础上,掌握基本的数学思想,才能够让学生站在更高的层次上理解数学问题。  关键词:数形结合;化归与转化思想;迁移思想  学生对数学知识的理解,往往需要借助数学问题,通过问题的解决,感悟数学计算的严谨性和科学性,这一学习过程犹如学生成长中的一个历程。因此,针对课堂教学资源,挖掘数学的本质,领会其中的数学思想至关重要。本文就以苏科版数学七年级上册“有理数的减

2、法”为例,谈一谈数形结合思想、化归与转化思想、迁移思想在有理数减法运算中的渗透。  一、数形结合思想的应用  1.数轴  在学习有理数之前,学生就已经接触了数轴,对数轴的属性有一定的了解。爱因斯坦把思维的灵活性看成是创造性的典型特点。在学习有理数的减法时,我们很自然地联系学生已经掌握的知识,运用数轴帮助学生理解有理数的减法,这就是数形结合思想。  我们来分享这样一段教学片段:在气象学中,将每天的最高气温与最低气温的差叫作日温差。若常州某天的最高气温是5℃,最低气温是-3℃4,你能求出常州这天的日温差吗?对此题中的问题,学生是这样思考的:在数轴上找到表示+5,-3的

3、点,从表示数5的点到表示-3的点,一共向左移了8个单位长度。这样就建立起等式5-(-3)=8,从而达到解决有理数减法运算的目的。  2.温度计  如果你手头有一支温度计,稍加观察,你会发现它与数轴有许多相似之处:有单位长度、零点、正方向、正数、负数等,而且随着温度的变化,水银柱会随之变化,水银柱顶端指示不同的数值。简而言之,温度计就是一个竖直摆放的数轴。区别在于温度计的刻度是有限的,而数轴可以向正、负方向无限延伸。  那么如何用温度计来模拟数学问题呢?笔者设计了以下几种问题情境。  问题1今天常州的最高气温是20℃,最低气温是15℃,那么常州今天的日温差是多少摄氏

4、度?(列式计算:20-15=5)  问题2某天哈尔滨的最高气温是0℃,最低气温是-8℃,那么哈尔滨这天的日温差是多少摄氏度?(列式计算:0-(-8)=8)  问题3某天北极的最高气温是-5℃,最低气温是-15℃,那么北极这天的日温差是多少摄氏度?(列式计算:-5-(-15)=10)  问题4某天格陵兰岛的最高气温是5℃,最低气温是-4℃,那么格陵兰岛这天的日温差是多少摄氏度?(列式计算:5-(-4)=9)  问题5通过观察温度计,你认为比1℃低4℃的温度存在吗?(存在!)从温度计上,我们观察到是多少摄氏度呢?(列式计算:1-4=-3)  问题6通过问题五的解答,观

5、察温度计,你知道比-1℃低4℃4的温度是多少吗?(列式计算:-1-4=-5)  在教学中,温度计配合问题出现,用PPT呈现一天中温度变化的动画效果。我们会发现学生解决问题的途径不是通过列式计算,而是通过读取温度计水银柱长度的变化,在图像前后的对比中直观地感受到某地最高气温与最低气温的差异,然后与列式结合起来建立等式,展现有理数减法运算的过程。  二、化归与转化思想的应用  在学习有理数减法之前,学生已熟练掌握有理数的加法运算,我们若能把减法也统一到加法中去,无疑减轻了学生的学习负担,这就是数学中的化归与转化思想。  我们运用温度计示数的变化得到了有理数减法运算的答

6、案,此时我们就能把有理数减法运算和加法运算连列成等式,观察并比较等式的左边和右边,笔者设计了以下几个问题串:  等式从左边到右边哪些量发生了变化,哪些量没有发生变化?变化的那些量是怎样变化的?等号的左边进行的是有理数的什么运算?等号的右边呢?你能用自己的语言简述一下你的发现吗?  20-15=20+(-15)  0-(-8)=0+8  -5-(-15)=-5+15  5-(-4)=5+4  1-4=1+(-4)  -1-4=-1+(-4)4  学生通过对比,发现等号左边是有理数的减法运算,右边是有理数的加法运算,并能描述有理数的减法法则:减去一个数,等于加上这个数

7、的相反数。从而用转化的形式将有理数减法运算划归为学生已经掌握的有理数加法运算。  三、迁移思想的应用  学习了有理数减法运算之后,再学习有理数除法运算就简单多了,学生很容易理解有理数加法与减法运算是互逆运算;有理数的乘法与除法运算是互逆运算,如果打好了有理数减法运算的基础,后续学习有理数除法运算那是轻而易举的事了。  从数学知识的汲取数学方法与思想的感悟,学生的思维发生了质的飞跃。因此在课堂教学时,作为一名数学教师要有这样的教学理念:既要关注学生数学知识的获得,也要加强数学方法、数学思想的渗透,从而培养学生良好的数学素养。4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。