欢迎来到天天文库
浏览记录
ID:31451561
大小:105.00 KB
页数:5页
时间:2019-01-10
《激情活趣 乐而思学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、激情活趣乐而思学 怎样才能激发学生学习数学的兴趣,大面积提高中学的数学教学质量?这是摆在我们广大数学教师面前的一个重大课题。在众多教学改革的原则中,情境教学具有一定的代表性,它以优化的情境为空间,根据教材的特点营造、渲染一种富有情境的氛围,让学生的活动有机地注入到学科知识的学习之中。它讲究强调学生的积极性,强调兴趣的培养,以形成主动发展的动因,提倡让学生通过观察,不断积累丰富的表象,让学生在实践感受中逐步认知知识,为学好数学、发展智力打下基础。简言之,情境教学以促进学生整体能力的和谐发展为主要目标。
2、 一、激发主动性 传统教育的弊端告诫我们:教育应以学生为本。面对当今新时期的青少年,服务于这样一种充满生气、有真挚情感、有更大可塑性的学习活动主体,教师决不可以越俎代庖,以知识的讲授替代主体的活动。情境教学就是把学生的主动参与具体化在优化的情境中产生动机、充分感受、主动探究。如在复习函数这节课时,教师可以创设以下的教学情境: “我”在徐家汇购物,甲商厦提出的优惠销售方法是所有商品按九五折销售,而乙商厦提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”5究竟该到哪家
3、商厦购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。 曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发
4、”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。 二、强化活动性 情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新
5、颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。 三、关注发展性5 数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境
6、教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。 比如在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理: 1、平行四边形定义:两组对边分别平行的四边形是平行四边形。 2、平行四边形判定定理:(1)两组对边分别相等的四边形是平行四边形。(2)对角线相互平分的四边
7、形是平行四边形。(3)两组对角分别相等的四边形是平行四边形。(4)一组对边平行且相等的四边形是平行四边形。 分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:1.一组对边平行且另一组对边相等的四边形是平行四
8、边形。2.一组对边平行且一组对角相等的四边形是平行四边形。3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。54.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。5.一组对边相等且一组对角相等的四边形是平行四边形。6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。 在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以
此文档下载收益归作者所有