欢迎来到天天文库
浏览记录
ID:31414366
大小:265.00 KB
页数:10页
时间:2019-01-09
《高考数学一轮复习 第6章 不等式及其证明 第6节 数学归纳法教师用书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争第六节 数学归纳法1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都
2、成立.2.数学归纳法的框图表示1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.( )(2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)√2.
3、(2017·杭州二中月考)在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验n等于( )A.1 B.2C.3D.0C [因为凸n边形最小为三角形,所以第一步检验n等于3,故选C.]3.已知n为正偶数,用数学归纳法证明1-+-+…-=2时,若已假设n=k(k≥2,且k为偶数)时命题为真,则还需要用归纳假设再证( )为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人
4、民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立B [k为偶数,则k+2为偶数.]4.(教材改编)已知{an}满足an+1=a-nan+1,n∈N*,且a1=2,则a2=__
5、________,a3=__________,a4=__________,猜想an=__________.3 4 5 n+15.用数学归纳法证明:“1+++…+1)”由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项的项数是__________.【导学号:51062209】2k [当n=k时,不等式为1+++…+6、证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).[证明] (1)当n=2时,左边=f(1)=1,右边=2=1,左边=右边,等式成立.4分(2)假设n=k(k≥2,k∈N*)时,结论成立,即f(1)+f(2)+…+f(k-1)=k[f(k)-1],8分那么,当n=k+1时,f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k=(k+1)-k=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],12分∴当7、n=k+1时结论仍然成立.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争由(1)(2)可知:f(1)+f(28、)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.2.由n=k时命题成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-+-+…+-=++…+(n∈N*).[证明] (1)当n=1时,左边=1-=,右边
6、证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).[证明] (1)当n=2时,左边=f(1)=1,右边=2=1,左边=右边,等式成立.4分(2)假设n=k(k≥2,k∈N*)时,结论成立,即f(1)+f(2)+…+f(k-1)=k[f(k)-1],8分那么,当n=k+1时,f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k=(k+1)-k=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],12分∴当
7、n=k+1时结论仍然成立.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争由(1)(2)可知:f(1)+f(2
8、)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.2.由n=k时命题成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-+-+…+-=++…+(n∈N*).[证明] (1)当n=1时,左边=1-=,右边
此文档下载收益归作者所有