欢迎来到天天文库
浏览记录
ID:31304921
大小:284.00 KB
页数:10页
时间:2019-01-08
《高考数学一轮复习 第6章 不等式推理与证明 第5节 直接证明与间接证明教师用书 文 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争第五节 直接证明与间接证明————————————————————————————————[考纲传真] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证
2、明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件思维过程由因导果执果索因框图表示→→…→→→…→书写格式因为…,所以…或由…,得…要证…,只需证…,即证…2.间接证明反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( )(2)分析法是从要证明的结论出发,逐步
3、寻找使结论成立的充要条件.( )(3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√2.要证明+<2,可选择的方法有以下几种,其中最合理的是( )A.综合法 B.分析法为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全
4、民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争C.反证法D.归纳法B [要证明+<2成立,可采用分析法对不等式两边平方后再证明.]3.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程
5、x2+ax+b=0恰好有两个实根A [“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根”,故选A.]4.已知a,b,x均为正数,且a>b,则与的大小关系是__________.> [∵-=>0,∴>.]5.(教材改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为__________三角形.等边 [由题意2B=A+C,又A+B+C=π,∴B=,又b2=ac,由余弦定理得b2=a2+c2-2accosB=a2+c2-ac,∴a
6、2+c2-2ac=0,即(a-c)2=0,∴a=c,∴A=C,∴A=B=C=,∴△ABC为等边三角形.]综合法 已知正方体ABCDA1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.[证明] (1)如图所示,因为EF是△D1B1C1的中位线,为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等
7、方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争所以EF∥B1D1.2分在正方体ABCDA1B1C1D1中,B1D1∥BD,所以EF∥BD,4分所以EF,BD确定一个平面,即D,B,F,E四点共面.5分(2)在正方体ABCDA1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β
8、.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,则Q是α与β的公共点.8分同理,P点也是α与β的公共点.9分所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且R∈β,则R∈PQ,故P,Q,R三点共线.12分[规律方法] 综合法是“由因导果”的
此文档下载收益归作者所有