欢迎来到天天文库
浏览记录
ID:31395430
大小:103.00 KB
页数:4页
时间:2019-01-09
《在抽象中学数学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、在抽象中学数学 一、数学是抽象的 我学了十多年的数学,最大的感受是数学的学习过程是不断变化着的,由幼儿园的数数、小学的算算身边的问题(应用题),到进入初中后直截了当地面对抽象的代数式,我们从充满好奇地数碗、数桌腿享受着童真之乐,到学习平面几何、平面直角坐标系和函数等等通往真正数学的学习,也就是抽象的数学,突如其来的字母、式子与推理取代了以往应用题的情境,让事物、问题本质化;数字1,2,1/2,…换成了字母x,y,α,β…,我们利用概念、图形、符号、关系表述包括已经简化了的事物在内的一类事物,将问题符号化,到了高
2、中,数学的学习变得有规律、系统化,从集合开始,到各种各样的函数,到解三角形、不等式,到导数……数学的概念越来越抽象,各种各样的定义、公理很有规律地出现在课本当中,作业纸上是一串串复杂的符号,脑中是一个又一个f(x),g(x)的图象,看到桌子,不会再数有几条腿,而是会想它的体对角线有多长;看到碗,不会再数有几个,而是会猜想是不是半球体……渐渐地,我开始学会在数学式中找规律,在图和形中探思路,在抽象的符号中寻路径。 所以,学了那么多年数学的我,也算对数学的抽象有了自己的了解了。 二、抽象是什么? 1,把事物本质化
3、4 抽象,是把繁杂问题简单化,条理化,幼儿园的老师常常用温柔如清风般的话语问我们:“如果你有一个苹果,别人又给了你两个苹果,那么你现在有几个苹果?”现在如果有人问我们这个问题,我们可能会认为是不是脑筋急转弯或是有意嘲弄我们的智商,因为这太简单了,就是“1+2=?”呀,而这恰恰是一抽象,去掉了冗杂的情境包装,暴露出来的是问题的本质,其实,解决数学问题就是一个不断探索问题本质的过程,就好像你吃柚子,需要把外面对你无用的皮一层层剥掉,才能品尝到可口的果实。 2,去掉具体内容,将问题符号化 我们都知道,数学这门学科力
4、求简单明了,用最干练的方式阐述出事物的性质,比如我们在学习立体几何时,需要研究平面、线点之间的关系,我们如果总是用文字“平面”“线”与平行或相交等来表述的话,那就会很麻烦,而抽象则可以很有效地解决这些麻烦,我们可以用“α”、“β”、“n”这些字母和符号来表示这些面、线以及它们之间的关系,定义出一些难以用文字表达的含义,而且别人也都明白这些含义,既能够简易表达促进解决问题,也方便不同的人交流想法。 3,通过假设和推理建立法则、公式或者模型,追求普适性 毕达哥拉斯学派有“万物皆数”的思想,他们认为世界上的所有事物都
5、体现或包含着数学的知识,而且可以用数学来表示、表达世界上一切事物,我们知道“天行有常,不为尧存,不为桀亡”,万物的运动都有一定的规律,那么,数学也是如此,普遍性是无处不在的,正如德国哲学家莱布尼茨所说“世界上没有两片完全相同的叶子,也没有两片完全不同的叶子”4,而抽象的重要方面就是在一般意义上解释具体事物,如果我们总是碰到一个看似从来未接触的问题就没了思路与头绪,漫无目地胡思乱想,只会让自己精神疲倦而无所得,我们要学会将其与一些我们熟悉的问题试着联系起来,寻求解法。 我们都知道二次函数的图象是抛物线,如果要求一个
6、二次函数的值域或最值,相信大多数初中生都能驾轻就熟。 三、怎样把数学学得抽象? 既然数学是抽象的,那么我们只有努力地把数学学得抽象,主动地去适应其抽象的特征,方能于数学的学习之路中走得更平坦、更顺畅。 1,最大限度地抽象 我们知道,“冰冻三尺,非一曝之寒”,要做到深层次的抽象,必须在平时的思考、做题中逼迫自己去抽象地思考问题,比如我们做一些几何的填空题,也许我们习惯于画个图,把平面几何的图描绘出来,或是把立体图形较为直观地画在图上,去分析观察,有些问题也许就能慢慢地解决,甚至有些问题通过图形一目了然,倘若一
7、直依赖于将其直观化来解题,又怎能将数学学得抽象呢?所以,我们要强迫自己最大限度地抽象,在脑海里思索这些问题,也许这个过程会有些痛苦,但我们抽象的能力及水平于无形之中一点点提升着,此外,对于一次函数、二次函数等这些我们熟悉的函数的图象,我们要做到头脑中有图。 2,让数学问题变得不太抽象 努力地去抽象当然很关键,但有时与其拘泥于泥淖之中进退两难,不如另辟蹊径,找到一条平坦一些的道路,达到事半功倍的效果。4 进入高中的数学学习后,数学这一门学科的学习再也不像往日那样轻松,迎来的挑战一波接一波,常常是解题时,想不出来
8、题目说的到底是什么样的,总还习惯性以为以前的老套路,老想法依然可以解题,结果往往是失败,数学也开始不需要从前那么“真实”,是玩“符号游戏”,有点“空对空”的感觉,这时候,我们应该学会灵巧一点,比如说画个图,让其直观化一些;或是举些例子,在例子中试图归纳出一些性质和共同点;再者我们可以将已经学过的知识与其联系起来,通过类比、推理的方法寻找解题的路径。 3,将
此文档下载收益归作者所有