欢迎来到天天文库
浏览记录
ID:31372438
大小:105.00 KB
页数:5页
时间:2019-01-09
《浅谈经典理论与量子力学的联系》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅谈经典理论与量子力学的联系 摘要:文章首先回顾了量子力学发展史上的几个问题,简要说明了“EPR佯谬”和“薛定谔的猫”的主要内容,然后通过“幽灵成像”实验简单介绍了近几年科学家在研究经典理论与量子理论关系时所付出的努力,继而通过介绍“量子世界中的欧姆定律”和“光合作用与量子力学的联系”说明了量子力学与我们生活的联系。最后,剖析总结量子力学现今仍存在的问题,并得到量子力学亟待发展这一结论。 关键词:经典理论量子力学联系 中图分类号:O413.1文献标识码:A文章编号:1672-3791(2016)08(a)-0143-02 量子力学于20世
2、纪早期建立以来,经过飞速的发展,逐渐成为现代物理学科中不可分割的一部分。量子力学是现代量子理论的核心,它的发展不仅关乎人类的物质文明,还使人们对量子世界的认识有了革命性的进展[1]。 但是,量子力学并不是一个完备的理论,其体系中还存在许多问题,特别是微观与宏观,即经典理论与量子力学的联系。为解决这些迷惑,历史上相关科学家提出了很多实验与理论。该文旨在以量子力学发展史上提出的几个实验为例,对其进行简单分析,以展示经典理论与量子力学的联系。 1问题的提出5 1935年3月,爱因斯坦等人在EPR论文中提出了“量子纠缠态”的概念,所谓的“量子纠缠态
3、”是以两个及以上粒子为对象的。在某种意义上,“量子纠缠态”可以理解为是把迭加态应用于两个及以上的粒子。若存在两个处于“量子纠缠态”的粒子,那这两个粒子一定是相互关联的,用量子力学的知识去理解,只要人们不去探测,那么每个粒子的状态都不能够确定。但是,假如同时使这两个粒子保持某一时刻的状态不变,也就是说,使两个粒子的迭加态在一瞬间坍缩,粒子1这时会保持一个状态不再发生变化,根据守恒定律,粒子2将会处于一个与粒子1状态相对应的状态。如果二者相距非常遥远,又不存在超距作用的话,是不可能在一瞬间实现两个粒子的相互通信的。但超距作用与当今很多理论是相悖的,于
4、是,这里就形成了佯谬,即“EPR佯谬”。 同年,薛定谔提出了一个实验,后人称之为“薛定谔的猫”。设想把一只猫关在盒子里,盒中有一个不受猫直接干扰的装置,这套装置是由其中的原子衰变进行触发,若原子衰变,装置会被触发,猫会立即死去。于是,量子力学中的原子核衰变间接决定了经典理论中猫的生死。由量子力学可知,原子核应该处于一种迭加态,这种迭加态是由“衰变”和“不衰变”两个状态形成的,那么猫应该也是处在一种迭加态,这种迭加态应该是由“死”与“生”两个状态形成的,猫的生死不再是一个客观存在,而是依赖于观察者的观测。显然,这与常理是相悖的[2]。 这两个佯
5、谬的根源是相同的,都是经典理论与量子理论之间的关系。 2近代研究进展 2.1验证量子纠缠的存在5 华裔物理学家YanhuaShih[3]曾做过一个被称为“幽灵成像”的实验,其实验过程及现象大致可以描述为:假设存在一个纠缠光源,这个光源可以发出两种互为纠缠的光子,通过偏振器使两种光子相互分离,令第一束光子通过一个狭缝,第二束不处理,然后观察两束光的投影,结果发现第二束光的投影形状与第一束光通过的狭缝形状完全相同。 人们发现,如果仅仅使用经典理论,实验现象是无法解释的,必须应用量子理论,才能解释“幽灵成像”的现象。这个实验也恰好验证了“量子纠
6、缠”现象的存在。 2.2量子世界中的欧姆定律 欧姆定律是由德国物理学家Ohm于19世纪早期提出来的,它是一种基于观察材料的电学传输性质得到的经验定律,其内容是:在同一电路中,导体中的电流跟导体两端所加的电压成正比,跟导体自身电阻成反比,即(U指导体两端电压;R指导体电阻;I指通过导体的电流)。 18世纪二、三十年代,人们认为经典方法在宏观领域是正确的,但是在微观领域将会被打破。Landauer公式给出了纳米线电阻的计算方法,即(h为普朗克常量;e为电子电量;N为横波模式数量);而在宏观中,(为材料的密度;l为样品的长度;s为样品的横截面积)
7、。由此发现,在宏观领域,样品的电阻是随着样品的长度增加而增加的,而在微观领域,样品的电阻与样品的长度没有关系。5 Weber[4]等人制备了原子尺度的纳米线并进行观察,实验发现,在微观领域,欧姆定律也是满足的。Ferry[5]认为样品的电阻是由多种机理所导致的,而他最后得到的结果正是由于多种机理的相互叠加。经过分析,他认为欧姆定律何时开始生效取决于纳米线中电子耗散的力度,力度越大说明开始生效时的尺度越小。但这也同时引发了另一个问题的思考:低温条件下,欧姆定律是仍然成立的,也就是说经典理论仍然成立,但往往是希望在低温下研究比较纯粹的量子效应。低温
8、条件下欧姆定律的成立要求在进行实验研究时,必须花费更多的精力来使得经典理论与量子理论分离开。 2.3生活中的量子力学――光合作用与量子
此文档下载收益归作者所有