资源描述:
《高考数学大一轮复习 第十一章 统计与统计案例 11_2 用样本估计总体课件 理 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§11.2用样本估计总体基础知识 自主学习课时作业题型分类 深度剖析内容索引基础知识 自主学习1.作频率分布直方图的步骤知识梳理(1)求极差(即一组数据中与的差).(2)决定与.(3)将数据.(4)列.(5)画.最大值最小值组距组数分组频率分布表频率分布直方图2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的增加,减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.中点组距组数3.茎叶图统计中还有一种被用来表示数据的图叫
2、做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种.(2)标准差:平均距离1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.知识拓展2.平均数、方差的公式推广(1)若数据x1,x2,…,xn的平均数为,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平
3、均数是m+a.(2)数据x1,x2,…,xn的方差为s2.①数据x1+a,x2+a,…,xn+a的方差也为s2;②数据ax1,ax2,…,axn的方差为a2s2.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.()(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.()(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.()思考辨析√×√(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()(5)在频
4、率分布直方图中,最高的小长方形底边中点的横坐标是众数.()(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.()×√×考点自测1.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是答案解析A.91.5和91.5B.91.5和92C.91和91.5D.92和92这组数据由小到大排列为87,89,90,91,92,93,94,96,2.(2015·陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为答案解析A.93B.123C.137D.167由题干扇形统计图可
5、得该校女教师人数为110×70%+150×(1-60%)=137.故选C.3.(2016·四川宜宾模拟)若数据x1,x2,x3,…,xn的平均数为=5,方差s2=2,则数据3x1+1,3x2+1,3x3+1,…,3xn+1的平均数和方差分别为答案解析A.5,2B.16,2C.16,18D.16,9∵x1,x2,x3,…,xn的平均数为5,∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.4.(2016·江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.答案解析
6、0.15.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100cm.答案解析24底部周长在[80,90)的频率为0.015×10=0.15,样本容量为60,所以树木的底部周长小于100cm的株数为(0.15+0.25)×60=24.底部周长在[90,100)的频率为0.025×10=0.25,题型分类 深度剖析题型一 频率分布直方图的绘制与应用例1(2016·北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过
7、w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?解答如图所示,用水量在[0.5,3)的频率的和为(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.∴用水量小于等于3立方米的频率为0.85,又w为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)假设同组中的每个数据用该组区间的右端点值代替.当w