资源描述:
《高考数学大一轮复习 第八章 立体几何与空间向量 8_5 空间向量及其运算教师用书 理 苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争第八章立体几何与空间向量8.5空间向量及其运算教师用书理苏教版1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a=b相反向量方向相反且模相等的向量a的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a∥b共面
2、向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ使b=λa.(2)共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数(x,y),使p=xa+yb.(3)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得p=xe1+ye2+ze3.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量
3、a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治
4、久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争②两向量的数量积已知空间两个非零向量a,b,则
5、a
6、
7、b
8、cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=
9、a
10、
11、b
12、cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b
13、a1b1+a2b2+a3b3共线b=λa(a≠0,λ∈R)b1=λa1,b2=λa2,b3=λa3垂直a·b=0(a≠0,b≠0)a1b1+a2b2+a3b3=0模
14、a
15、夹角〈a,b〉(a≠0,b≠0)cos〈a,b〉=【知识拓展】1.向量三点共线定理:在平面中A、B、C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.2.向量四点共面定理:在空间中P、A、B、C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间中任意一点.【思考辨析】判断下列结论是否正确(请
16、在括号中打“√”或“×”)(1)空间中任意两非零向量a,b共面.( √ )(2)在向量的数量积运算中(a·b)·c=a·(b·c).( × )(3)对于非零向量b,由a·b=b·c,则a=c.( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A、B、C、D是空间任意四点,则有+++=0.( √ )为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群
17、众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争1.已知正四面体ABCD的棱长为a,点E,F分别是BC,AD的中点,则·的值为________.答案 a2解析 如图,设=a,=b,=c,则
18、a
19、=
20、b
21、=
22、c
23、=a,且a,b,c三向量两两夹角为60°.=(a+b),=c,∴·=(
24、a+b)·c=(a·c+b·c)=(a2cos60°+a2cos60°)=a2.2.(2016·苏州模拟)向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),下列结论正确的是________.①a∥b,a∥c;②a∥b,a⊥c;③a∥c,a⊥b.答案 ③解析 因为c=(-4,-6,2)=2(-2,-3,1)=2a,所以a∥c.又a·b=(-2)×2+(-3)×0+1×4=0,所以a⊥b.3.(教材改编)已知a=(2,4,x),b=(2,y,2),若
25、a
26、=6,且a⊥b,则x+