点o是ac边上(端点除外)的一个动点,_设计

点o是ac边上(端点除外)的一个动点,_设计

ID:31144354

大小:88.00 KB

页数:8页

时间:2019-01-06

点o是ac边上(端点除外)的一个动点,_设计_第1页
点o是ac边上(端点除外)的一个动点,_设计_第2页
点o是ac边上(端点除外)的一个动点,_设计_第3页
点o是ac边上(端点除外)的一个动点,_设计_第4页
点o是ac边上(端点除外)的一个动点,_设计_第5页
资源描述:

《点o是ac边上(端点除外)的一个动点,_设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【思路分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BAC,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解析过程】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形;证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴

2、∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴四边形AECF是矩形.【答案】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形;证明:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,又∵∠1=∠2,∠4=∠5,∴∠

3、1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴四边形AECF是矩形【总结】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明∠ECF是90°.题文如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动

4、.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.答案(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形;(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q

5、的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=20/3(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=28/3(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而28/3<11,∴当t为4s,20/3s,28/3s时,⊙P与⊙Q外切.考点名称:矩形,矩形的性质,矩形的判定矩形:是一种平面图形,矩形的四个角都是直角,同时矩形的对

6、角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。矩形的性质:1.矩形的4个内角都是直角;2.矩形的对角线相等且互相平分;3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质6.顺次连接矩形各边中点得到的四边形是菱形矩形的判定:①定义:有一个角是直角的平行四边形是矩形②定理1:有三个角是直角的四边形是矩形③定理2:对

7、角线相等的平行四边形是矩形④对角线互相平分且相等的四边形是矩形矩形的面积:S矩形=长×宽=ab。黄金矩形:宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。题文如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么

8、位置时,矩形PEMF变为正方形,为什么?答案(1)当AD=2AB时,四边形PEMF为矩形.证明:∵四边形ABCD为矩形,∴∠A=∠D=90°,∵AD=2AB=2CD,AM=DM=1/2AD,∴AB=AM=DM=CD,∴∠ABM=∠AMB=45°,∠DCM=∠DMC=45°,∴∠BMC=180°-45°-45°=90°,∵PE⊥MC,PF⊥BM,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。