资源描述:
《高考数学二轮专题复习与策略 第1部分 专题6 函数与导数 突破点17 函数与方程专题限时集训 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。专题限时集训(十七) 函数与方程[A组 高考达标]一、选择题1.(2016·泰安一模)函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)C [由于函数f(x)=lnx+x3-9在(0,+∞)上是增函数,f(2)=ln2-1<0,f(3)=ln3+18>0,故函数f(x)=lnx+x3-9在区间(2,3)上有唯一的零点.]2.(2016
2、·张掖一模)已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=x-的零点依次为a,b,c,则( )A.c<b<aB.a<b<cC.c<a<bD.b<a<cB [由f(x)=0得ex=-x,由g(x)=0得lnx=-x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=ex,y=-x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.]3.(2016·武汉模拟)已知函数f(x)=则函数g(x)=f(1-x)-1的零点个数为( )A.1B.2C.3 D.4C [g(x)=f(1-x)-1==当x≥1时,函数g(x)有1个零点;当x<1
3、时,函数有2个零点,所以函数的零点个数为3,故选C.]4.(2016·山东实验中学模拟)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是( )A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)D [当x>0时,f(x)=3x-1有一个零点x=,所以只需要当x≤0时,ex+a=0有一个根即可,即ex=-a.当x≤0时,ex∈(0,1],所以-a∈(0,1],即a∈[-1,0),故选D.]通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社
4、会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。5.(2016·安庆二模)已知函数f(x)=若函数g(x)=f(x)-k仅有一个零点,则k的取值范围是( )A.B.(-∞,0)∪C.(-∞,0)D.(-∞,0)∪D [函数f(x)=函数g(x)=f(x)-k仅有一个零点,即f(x)=k只有一个解,在平面直角坐标系中画出y=f(x)的图象,结合函数图象可知,方程只有一个解时,k∈(-∞,0)∪,故选D.
5、]二、填空题6.(2016·济南模拟)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________. [当x∈[0,3)时,f(x)==,由f(x)是周期为3的函数,作出f(x)在[-3,4]上的图象,如图.由题意知方程a=f(x)在[-3,4]上有10个不同的根.由图可知a∈.]7.(2016·西安模拟)函数f(x)=
6、x-1
7、+2cosπx(-4≤x≤6)的所有零点之和为________.10 [问题可转化为y=
8、x-1
9、与y=-2cosπx在-4≤x≤6
10、的交点的横坐标的和,因为两个函数图象均关于x=1对称,所以x=1两侧的交点对称,那么两对应交点的横坐标的和为2,分别画出两个函数的图象(图略),易知x通过党课、报告会、学习讨论会等多种形式,组织党员读原著、学原文、悟原理,进一步掀起学习贯彻新高潮,教育引导广大党员更加自觉用习近平新时代中国特色社会主义思想武装头脑、指导实践、推动工作。系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。=1两侧分别有5个交点,所以所求和为5×2=10.]8.(20
11、16·南宁二模)已知函数f(x)=若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点个数为________.【导学号:67722064】3 [依题意得解得令g(x)=0,得f(x)+x=0,该方程等价于①或②解①得x=2,解②得x=-1或x=-2,因此,函数g(x)=f(x)+x的零点个数为3.]三、解答题9.已知f(x)=
12、2x-1
13、+ax-5(a是常数,a∈R).(1)当a=1时,求不等式f(x)≥0的解集;(2)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.[解] (1