高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2

高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2

ID:30897588

大小:444.00 KB

页数:14页

时间:2019-01-04

高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2_第1页
高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2_第2页
高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2_第3页
高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2_第4页
高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2_第5页
资源描述:

《高中数学 2_3_1 2.3.2 数学归纳法 数学归纳法应用举例学案 新人教b版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2.3.1 数学归纳法2.3.2 数学归纳法应用举例1.了解数学归纳法的原理.(重点、易混点)2.掌握数学归纳法的步骤.(难点)3.能用数学归纳法证明一些简单的数学命题.(难点)[基础·初探]教材整理 数学归纳法阅读教材P69~P72,完成下列问题.数学归纳法的定义一个与________相关的命题,如果(1)_______________________________;(2)在假设当_________

2、_______________时命题也成立的前提下,推出当n=k+1时命题也成立,那么可以断定,这个命题对n取第一个值后面的所有正整数成立.【答案】 自然数 (1)当n取第一个值n0时命题成立(2)n=k(k∈N+,且k≥n0)判断(正确的打“√”,错误的打“×”)(1)与正整数n有关的数学命题的证明只能用数学归纳法.(  )(2)数学归纳法的第一步n0的初始值一定为1.(  )(3)数学归纳法的两个步骤缺一不可.(  )【答案】 (1)× (2)× (3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1

3、: 解惑: 政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线疑问2: 解惑: 疑问3: 解惑: [小组合作型]用数学归纳法证明等式 (1)用数学归纳法证明等式1+2+3+…+(n+3)=(n∈N+)时,第一步验证n=1时,左边应取的项是(  )A.1        B.1+2C.1+2+3D.1+2+

4、3+4(2)用数学归纳法证明(n+1)·(n+2)·…·(n+n)=2n×1×3×…×(2n-1)(n∈N+),“从k到k+1”左端增乘的代数式为__________.【导学号:05410051】【自主解答】 (1)当n=1时,左边应为1+2+3+4,故选D.(2)令f(n)=(n+1)(n+2)…(n+n),则f(k)=(k+1)·(k+2)…(k+k),f(k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2),所以==2(2k+1).【答案】 (1)D (2)2(2k+1)数学归纳法证题的三个关键点1.验证是基础找准

5、起点,奠基要稳,有些问题中验证的初始值不一定是1.2.递推是关键数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n=k到n=k+1时,等式的两边会增加多少项、增加怎样的项.3.利用假设是核心在第二步证明n=k+1成立时,一定要利用归纳假设,即必须把归纳假设“n=k政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。

6、忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线时命题成立”作为条件来导出“n=k+1”,在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.[再练一题]1.下面四个判断中,正确的是(  )A.式子1+k+k2+…+kn(n∈N+)中,当n=1时,式子的值为1B.式子1+k+k2+…+kn-1(n∈N+)中,当n=1时,式子的值为1+kC.式子1+++…+(n∈N+)中,当n=1时,式子的值为1++D.设f(n

7、)=++…+(n∈N+),则f(k+1)=f(k)+++【解析】 A中,n=1时,式子=1+k;B中,n=1时,式子=1;C中,n=1时,式子=1++;D中,f(k+1)=f(k)+++-.故正确的是C.【答案】 C用数学归纳法证明不等式 (1)用数学归纳法证明不等式++…+>(n≥2,n∈N+)的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是__________.(2)证明:不等式1+++…+<2(n∈N+).【精彩点拨】 (1)写出当n=k时左边的式子,和当n=k+1时左边的式子,比较即可.(2)在由n=k到n=k+1

8、推导过程中利用放缩法,在利用放缩时,注意放缩的度.【自主解答】 (1)当n=k+1时左边的代数式是++…++,增加了两项与,但是少了一项,故不等式的左边增加的式子是+-政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。