欢迎来到天天文库
浏览记录
ID:30818040
大小:273.00 KB
页数:10页
时间:2019-01-03
《中考数学一轮复习课后作业相似形的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线相似形的性质课后作业1、两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是( )A.52B.54C.56D.582、已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为( )A.2:3B.3:2C.4:9D.9:43、如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE
2、与S△CDE的比是( )A.1:3B.1:4C.1:5D.1:254、如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为( )A.B.C.D.45、如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=6,AB=9,则AD=( )A.2B.3C.4D.56、如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方
3、形纸条是( )A.第4张B.第5张C.第6张D.第7张政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线7、如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.8、如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F
4、,若S△DEC=3,则S△BCF=.9、如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.10、如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过BC上的点D与AB交于点E,连接DE,若E是AB的中点.(1)求D点的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求BF的解析式.政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政
5、德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线11、如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.12、一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?政德才能立得稳、立得牢。要深入学
6、习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线参考答案1、解析:根据已知先求得两相似三角形的相似比,然后根据相似比可求得较大的三角形的三边的长,根据其边长判定三角形为直角三角形,从而不难求得其面积.解:∵两相似三角形的周长分别是36和12∴相似比为3:1∵周长较大的三角形的最大边为15,周长较小的三角形的最小边为3∴周长较大的三角形的最小边为9,周长较小的三角形的最大边为5∴周长较大
7、的三角形的第三条边为12∴两个三角形均为直角三角形∴周长较大的三角形的面积=×9×12=54故选B2、解析:根据相似三角形的性质:相似三角形对应高的比等于相似比即可得到答案.解:∵△ABC∽△DEF,且相似比为2:3,∴△ABC与△DEF的对应高之比为2:3,故选:A3、解析:根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到,=,结合图形得到,得到答案.解:∵DE∥AC,∴△DOE∽△COA,又S△DOE
此文档下载收益归作者所有