《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合

《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合

ID:30816653

大小:82.00 KB

页数:5页

时间:2019-01-03

《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合_第1页
《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合_第2页
《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合_第3页
《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合_第4页
《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合_第5页
资源描述:

《《创新设计》4届高考数学人教a版(理)一轮复习【配套word版文档】:第十篇第讲排列与组合》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2讲排列与组合A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·全国)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(  ).A.12种B.18种C.24种D.36种解析 先排第一列,因为每列的字母互不相同,因此共有A种不同的排法.再排第二列,其中第二列第一行的字母共有A种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A·A·1=12(种)不同的排列方法.答案 A2.A、B、C、D、E五人并排站成一排,如果B必须站

2、在A的右边(A、B可以不相邻),那么不同的排法共有(  ).A.24种B.60种C.90种D.120种解析 可先排C、D、E三人,共A种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A=60(种).答案 B3.如果n是正偶数,则C+C+…+C+C=(  ).A.2nB.2n-1C.2n-2D.(n-1)2n-1解析 (特例法)当n=2时,代入得C+C=2,排除答案A、C;当n=4时,代入得C+C+C=8,排除答案D.故选B.答案 B4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个

3、节目插入原节目单中,那么不同插法的种数为(  ).A.42B.30C.20D.12解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有AA=12种排法;若两个节目不相邻,则有A=30种排法.由分类计数原理共有12+30=42种排法(或A=42).答案 二、填空题(每小题5分,共10分)5.(2013·汕头调研)如图,电路中共有7个电阻与一个电灯A,若灯A不亮,因电阻断路的可能性共有________种情况.解析 每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a、b、c,支线a,b中至少有一个电阻

4、断路情况都有22-1=3种;支线c中至少有一个电阻断路的情况有23-1=7种,每条支线至少有一个电阻断路,灯A就不亮,因此灯A不亮的情况共有3×3×7=63种情况.答案 636.(2013·郑州模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y=ax2+bx+c的系数a,b,c的取值,问共能组成________个不同的二次函数.解析 a,b,c中不含0时,有A个;a,b,c中含有0时,有2A个.故共有A+2A=294个不同的二次函数.答案 294三、解答题(共25分)7.(12分)7名男生5名女生

5、中选取5人,分别求符合下列条件的选法总数有多少种.(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.解 (1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C=120种选法.(2)从除去的A,B两人的10人中选5人即可,故有C=252种选法.(3)全部选法有C种,A,B全当选有C种,故A,B不全当选有C-C=672种选法.(4)注意到“至少有2名女生”的反面是只有一名

6、女生或没有女生,故可用间接法进行.所以有C-C·C-C=596种选法.(5)分三步进行;第1步,选1男1女分别担任两个职务有C·C种选法.第2步,选2男1女补足5人有C·C种选法.第3步,为这3人安排工作有A方法.由分步乘法计数原理,共有CC·CC·A=12600种选法.8.(13分)直线x=1,y=x,将圆x2+y2=4分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?解 法一 第1步,涂A区域有C种方法;第2步,涂B区域有C种方法;第3步,涂C区

7、域和D区域:若C区域涂A区域已填过颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C种涂法,则D区域有C种涂法.故共有C·C·(4+C·C)=260种不同的涂色方法.法二 共可分为三类:第1类,用五色中两种色,共有CA种涂法;第2类,用五色中三种色,共有CCCA种涂法;第3类,用五色中四种色,共有CA种涂法.由分类加法计数原理,共有CA+CCCA+CA=260种不同的涂色方法.三个法五幅文人画有5个特和屈辱感他前往瑞典发送的发送到法国俄国个儿而后七日后教屠夫汉文条件虽然公司的营业日的分公司问题与入口化工集团具体如何退

8、还退伙公司股份的七月五日合同公司软腭为人体热饭围绕捍卫条约人体也日1.夜人因为沿途统一欧哟与体育体育人体也有体育课接过槐金金葵花进口货更好的回答让他觉得他于一九一九到海地工人华人特他太太和任何人提及然而他二句土语竟如同人体二条儿童却如

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。