用二分法求方程的近似解(2)

用二分法求方程的近似解(2)

ID:30281340

大小:179.05 KB

页数:5页

时间:2018-12-28

用二分法求方程的近似解(2)_第1页
用二分法求方程的近似解(2)_第2页
用二分法求方程的近似解(2)_第3页
用二分法求方程的近似解(2)_第4页
用二分法求方程的近似解(2)_第5页
资源描述:

《用二分法求方程的近似解(2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、饶平二中2010学年度第一学期高一数学(必修1)教案课题§3.1.2用二分法求方程的近似解课时1课时教学目标知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感态度与价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法

2、求给定精确度的方程的近似解.教学方法教学程序与环节设计:由二分查找及高次多项式方程的求问题引入.创设情境二分法的意义、算法思想及方法步骤.组织探究体会函数零点的意义,明确二分法的适用范围.探索发现二分法的算法思想及方法步骤,初步应用二分法解决简单问题.尝试练习二分法应用于实际.作业回馈1.二分法为什么可以逼近零点的再分析;2.追寻阿贝尔和伽罗瓦.教学过程:1、创设情景:材料一:二分查找(binary-search)(第六届全国青少年信息学(计算机)奥林匹克分区联赛提高组初赛试题第15题)某数列有1000个各不相同的单元,由低至高按序

3、排列;现要对该数列进行二分法检索(binary-search),在最坏的情况下,需检索( )个单元。A.1000B.10 C.100 D.500二分法检索(二分查找或折半查找)演示.材料二:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不

4、存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.师生双边互动:师:从学生感兴趣的计算机编程问题,引导学生分析二分法的算法思想与方法,引入课题.生:体会二分查找的思想与方法.师:从高次代数方程的解的探索历程,引导学生认识引入二分法的意义.组织探究:二分法及步骤:对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在

5、的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度,用二分法求函数的零点近似值的步骤如下:1.确定区间,,验证·,给定精度;2.求区间,的中点;3.计算:师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.分析条件“·”、“精度”、“区间中点”及“”的意义.利用多媒体呈现教学材料:若=,则就是函数的零点;若·<,则令=(此时零点);若·<,则令=(此时零点);4.判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤2~4.例题解析:例1.求函数的

6、一个正数零点(精确到).分析:首先利用函数性质或借助计算机、计算器画出函数图象,确定函数零点大致所在的区间,然后利用二分法逐步计算解答.解:(略).注意:第一步确定零点所在的大致区间,,可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间;建议列表样式如下:零点所在区间中点函数值区间长度[1,2]>01[1,1.5]<00.5[1.25,1.5]<00.25如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步.例2.借助计算器或计算机用二分法求方程的近似解(

7、精确到).解:(略).思考:本例除借助计算器或计算机确定方程解所在的大致区间和解的个数外,你是否还可以想到有什么方法确定方程的根的个数?师生双边互动:师:引导学生利用二分法逐步寻求函数零点的近似值,注意规范方法、步骤与书写格式.生:根据二分法的思想与步骤独立完成解答,并进行交流、讨论、评析.师:引导学生应用函数单调性确定方程解的个数.生:认真思考,运用所学知识寻求确定方程解的个数的方法,并进行、讨论、交流、归纳、概括、评析形成结论.结论:图象在闭区间,上连续的单调函数,在,上至多有一个零点.探究与发现:1)函数零点的性质从“数”的角

8、度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点.2)用二分法求函数的变号零点二分法的条件·表明用二分法求函数的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。