欢迎来到天天文库
浏览记录
ID:30246478
大小:188.50 KB
页数:14页
时间:2018-12-28
《圆柱螺旋压缩(拉伸)弹簧地设计计算》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案圆柱螺旋压缩(拉伸)弹簧的设计计算(一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(m
2、m)计算公式)。普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式精彩文档实用标准文案参数名称及代号计算公式备注压缩弹簧拉伸弹簧中径D2D2=Cd按普通圆柱螺旋弹簧尺寸系列表取标准值内径D1D1=D2-d外径DD=D2+d旋绕比CC=D2/d压缩弹簧长细比bb=H0/D2b在1~5.3的范围内选取自由高度或长度H0H0≈pn+(1.5~2)d(两端并紧,磨平)H0≈pn+(3~3.5)d(两端并紧,不磨平)H0=nd+钩环轴向长度精彩文档实用标准文案工作高度或长度H1,H2,…,HnHn=H0-λnHn=H0+λnλn--工作变
3、形量有效圈数n根据要求变形量按式(16-11)计算n≥2总圈数n1n1=n+(2~2.5)(冷卷)n1=n+(1.5~2)(YII型热卷)n1=n拉伸弹簧n1尾数为1/4,1/2,3/4整圈。推荐用1/2圈节距pp=(0.28~0.5)D2p=d轴向间距δδ=p-d展开长度LL=πD2n1/cosαL≈πD2n+钩环展开长度螺旋角αα=arctg(p/πD2)对压缩螺旋弹簧,推荐α=5°~9°质量msms=γ为材料的密度,对各种钢,γ=7700kg/;对铍青精彩文档实用标准文案·(二)特性曲线 弹簧应具有经久不变的弹性,且不允许
4、产生永久变形。因此在设计弹簧时,务必使其工作应力在弹性极限范围内。在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧在没有承受外力时的自由长度。弹簧在安装时,通常预加一个压力Fm
5、in,使它可靠地稳定在安装位置上。Fmin称为弹簧的最小载荷(安装载荷)。在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。Fmax为弹簧承受的最大工作载荷。在Fmax作用下,弹簧长度减到H2,其压缩变形量增到λmax。λmax与λmin的差即为弹簧的工作行程h,h=λmax-λmin。Flim为弹簧的极限载荷。在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。与Flim对应的弹簧长度为H3,压缩变形量为λlim。圆柱螺旋压缩弹簧的特性曲线·精彩文档实用标准文案 等节距的圆柱螺旋压缩弹簧的特性曲线为一直线,亦即
6、 压缩弹簧的最小工作载荷通常取为Fmin=(0.1~0.5)Fmax;但对有预应力的拉伸弹簧(图<圆柱螺旋拉伸弹簧的特性曲线>),Fmin>F0,F0为使只有预应力的拉伸弹簧开始变形时所需的初拉力。弹簧的最大工作载荷Fmax,由弹簧在机构中的工作条件决定。但不应到达它的极限载荷,通常应保持Fmax≤0.8Flim。 弹簧的特性曲线应绘在弹簧工作图中,作为检验和试验时的依据之一。此外,在设计弹簧时,利用特性曲线分析受载与变形的关系也较方便。圆柱螺旋拉伸弹簧的特性曲线(三)圆柱螺旋压缩(拉伸)弹簧受
7、载时的应力及变形 圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。由图<圆柱螺旋压缩弹簧的受力及应力分析a>(图中弹簧下部断去,末示出)可知,由于弹簧丝具有升角α,故在通过弹簧轴线的截面上,弹簧丝的截面A-A呈椭圆形,该截面上作用着力F及扭矩。因而在弹簧丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ=Tcosα。由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;
8、cosα≈1(下图<圆柱螺旋压缩弹簧的受力及应力分析b>),则截面B-B上的应力(下图<圆柱螺旋压缩弹簧的受力及应力分析c>)可近似地取为 精彩文档实用标准文案式中C=D2/d称为旋绕比(或弹簧指数)。为了使弹簧本身较为稳定,不
此文档下载收益归作者所有