投资地收益与风险的问的题目数学建模

投资地收益与风险的问的题目数学建模

ID:30236969

大小:466.50 KB

页数:16页

时间:2018-12-28

投资地收益与风险的问的题目数学建模_第1页
投资地收益与风险的问的题目数学建模_第2页
投资地收益与风险的问的题目数学建模_第3页
投资地收益与风险的问的题目数学建模_第4页
投资地收益与风险的问的题目数学建模_第5页
资源描述:

《投资地收益与风险的问的题目数学建模》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案《数学模型与数学软件综合训练》论文训练题目:投资的收益与风险问题学生学号:07500134姓名:海莲学院:计算机与通信学院专业:信息与计算科学专业指导教师:黄灿云(理学院)日期:2010年春季学期精彩文档实用标准文案目录一前言3二投资与风险问题41.论文摘要42.问题重述与分析43.假设与模型63.1模型a63.2模型b63.3模型c63.4模型求解及分析6四模型评价与推广12五总结13六参考文献13七附录13精彩文档实用标准文案一前言投资的收益与风险作为高科技产业化的催化剂和孵化器,日益引起了人们的广泛关注和重视。世界各国都在积极发展自己的风险投资业,以促进经济的

2、发展和国家的繁荣,关于风险投资一般是指特定的人员或机构向创业初期预期有较大发展潜力。但风险也很大的为企业提供融资或参与管理的行为。这里的特定人员或机构一般具有较高的技能和较为雄厚的资本,通常称为风险投资者或风险投资公司;接受投资或管理的企业,通常是高科技企业,称为风险企业。由于风险投资与企业创业紧密联系在一起,所以又称创业投资。在我国,风险投资刚刚起步,但对国民经济发展和社会进步意义十分重大,因而越来越引起人们的重视。精彩文档实用标准文案二投资与风险问题1.论文摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险

3、尽可能小,而这两个目标在一定意义上是对立的。本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。关键词:组合投资,两目标优化模型,风险偏好2.问题重述与分析市场上有种资产(如股票、债券、…)()供投资者选择,某公司有数额

4、为的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。另外,假定同期银行存款利率是,且既无交易费又无风险。()1、已知时的相关数据如下:资产收益率(%)风险率(%)交易费(%)阀值(元)282.51103211.52198235.54.552252.66.540试给该公司设计一种投资组

5、合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。资产收益率(%)风险率(%)交易费(%)阀值(元)9.6422.118118.5543.240749.4606.042823.9421.55498.11.27.627014393.439740.7685.617831.233.43.1220精彩文档实用标准文案33.653.32.747536.8402.924811.8315.119595.55.732035462.72679.45.34.532815237.6131 本题

6、需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。并给出对应的盈亏数据,以及一般情况的讨论。这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合

7、,简称组合方案。设购买Si(i=0,1…….n;S0表示存入银行,)的金额为xi;所支付的交易费为ci(xi),则:对Si投资的净收益为: (i=0,1,…,n)对Si投资的风险为: (i=0,1,…,n),q0=0 对Si投资所需资金(即购买金额xi与所需的手续费ci(xi)之和)是 (i=0,1,…,n) 投资方案用x=(x0,x1,…,xn)表示,那么,净收益总额为:总风险为:=所需资金为:所以,总收益最大,总风险最小的双目标优化模型表示为:但是像这样的双目标模型用一般的方法很难求解出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。