箱子地摆放问地的题目数学建模

箱子地摆放问地的题目数学建模

ID:28638846

大小:552.50 KB

页数:15页

时间:2018-12-12

箱子地摆放问地的题目数学建模_第1页
箱子地摆放问地的题目数学建模_第2页
箱子地摆放问地的题目数学建模_第3页
箱子地摆放问地的题目数学建模_第4页
箱子地摆放问地的题目数学建模_第5页
资源描述:

《箱子地摆放问地的题目数学建模》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案箱子的摆放策略摘要本文针对箱子的摆放的优化铺设问题,采用了循环嵌套式算法,建立了利用率最优化的整数规划模型,使用LINGO、MATLAB求解,并用Excel进行画图,实现了箱子最优摆放与评价。对于问题一,建立在不允许箱子超出底边的情况下,所能摆放最多箱子的数学模型。借助于循环嵌套式算法,采用改进后的由外至内逐步优化的模型:首先对各边的外层进行摆放,使其边界利用率最高,再对内层剩余矩形空间进行摆放,一直循环,至内部剩余空间无法放入箱子为止。用MATLAB编程、求解分析:以此模型摆放,第一种箱子个数为16、第二种

2、箱子个数为4、第三种箱子个数为20。对于问题二,建立在允许箱子超出上、左、右边的情况下,所能摆放最多箱子的数学模型。建立由下至上逐步优化模型:以底边为基,将其两边各向外扩充半个长边的长度,先对底边进行摆放,使其边界利用率最高,再向上堆叠,使箱子间无空隙,使面积利用率最大,至上侧最多超出半个箱子边长为止。用lingo编程、求解分析:以此模型摆放,第一种箱子个数为23、第二种箱子个数为8、第三种箱子个数为28。对于问题三,我们采用左右对称,箱子横放,向上堆叠,左、右、上边各超出少许的方案。引入箱子个数、稳定性两个指标,通过线

3、性加权评价的方式,对此方案与模型一进行评价分析。得出了在在实际情况中,当考虑不同权重的综合指数时,模型一与模型三的摆放方式各有优劣性的结论。关键词:利用率最高循环嵌套式算法线性加权评价精彩文档实用标准文案一、问题重述叉车是指对成件托盘货物进行装卸、堆垛和短距离运输作业的各种轮式搬运车辆。如何摆放箱子,使得叉车能将最多的货物从生产车间运输至仓库是众多企业关心的问题。现将箱子的底面统一简化为形状、尺寸相同的长方形,叉车底板设定为一个边长为1.1米的正方形。要求建立一个通用的优化模型,在给定长方形箱子的长和宽之后,就能利用这个

4、模型算出使得箱子数量最多的摆放方法。本题需要解决的问题有:问题一:在不允许箱子超出叉车底板,也不允许箱子相互重叠的情况下,构建一个优化模型,并根据题目中提供的三种型号箱子的数据,确定可以摆放的个数及摆放示意图。问题二:假设箱子密度均匀,允许箱子在正方形底板的上方,左边,右边部分超出底板,但不至于掉落出叉车底板。重建优化模型,考虑问题一中三种规格的箱子的摆放方式。问题三:在不允许箱子相互重叠的条件下,另外设计出一种摆放方案,再将设计的方案与问题一中的摆放方案的进行优劣性对比。二、模型假设1.假设箱子的密度都是均匀的,若允许

5、箱子在正方形底板的上方,左边,右边部分超出底板(下方紧靠叉车壁,不能超出),只要重心不超出底板,就不至于掉落出叉车底板。2.假设箱子表面光滑,箱子间摆放无缝隙,即把箱子当做小矩形进行分析。3.假设叉车的承重能力无限大,能承载足够多的箱子。三、符号说明符号解释说明a小矩形箱的长b小矩形箱的宽c长边向上叠加的矩形箱个数d宽边向上叠加的矩形箱个数m底边上矩形箱的长边个数n底边上矩形箱的宽边个数sum小矩形的总个数wj摆放指标的权重系数xj摆放指标无量纲化后的数值精彩文档实用标准文案四、问题分析本文研究的是在一个边长为1.1的正

6、方形叉车底板上堆放长方体箱子的问题。不同规格的箱子最佳堆放方式是不同的,要尽量多的满足各种型号箱子摆放数量最多,就要设计一个通用的优化方案。问题一要求在既不允许箱子超出叉车底板,也不允许箱子相互重叠的情况下考虑货物的堆放方案。首先,借鉴于循环嵌套式的启发式算法,列出在不超出边际的情况下,设计能够最大限度地使用正方形底板边长的MATLAB程序,求解得到最优的长宽组合及所有小矩形的个数。再结合矩形Packing问题的贪心算法进行占穴动作,以正方形边长的利用率最大化为优化目标,得到最终的摆放方案,并利用EXCEL作出示意图。问

7、题二要求在可超出正方形底板的上方、左边、右边的情况下重新考虑问题一。为最大限度的扩大可使用面积,先将正方形底板靠近叉车壁的一边分别向左、向右扩宽箱子长的一半,再将其相对的边向上扩长箱子长的一半,得到本问的最大可用面积(矩形)。类比于第一问的分析,设计LINGO算法先求解靠近叉车壁的一边最优的长宽配比。为避免内部出现空隙,以该边为基,直接向上堆叠,得到最优方案并以EXCEL作出示意图。问题三要求在不允许箱子相互重叠的条件下,重新设计出一种摆放方案。首先,以同样的方式将矩形箱摆放进叉车,允许小矩形箱少部分超出叉车底板,不允许

8、出现矩形箱旋转情况,使摆放不存在缝隙且左右对称。再使用线性加权综合指数法,设定摆放个数和稳定性的指标,对模型三和模型一的摆放方式进行优劣性对比。五、模型的建立与求解问题一:模型一:由外至内逐步优化模型基于循环嵌套式算法,采用一种简化的模型,来解决二维矩形排列问题。在边长为1.1的正方形中,放入的小矩形(a为长,b为宽

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。