欢迎来到天天文库
浏览记录
ID:30220440
大小:321.04 KB
页数:21页
时间:2018-12-27
《苏科版八级上《第章平面直角坐标系》单元测试含答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
第5章平面直角坐标系 一、选择题(共16小题)1.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.在下列所给出坐标的点中,在第二象限的是( )A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.在平面直角坐标系中,点M(﹣2,1)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点A(2,﹣3)在第( )象限.A.一B.二C.三D.四5.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图,点A(﹣2,1)到y轴的距离为( )A.﹣2B.1C.2D.7.点P(4,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)9.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )第21页(共21页) A.景仁宫(4,2))B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)10.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=( )A.(5,﹣9)B.(﹣9,﹣5)C.(5,9)D.(9,5)11.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?( )A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)12.如果m是任意实数,则点P(m﹣4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限13.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定14.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?( )A.一B.二C.三D.四第21页(共21页) 15.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)B.(67,33)C.(100,33)D.(99,34)16.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺 二、填空题(共14小题)17.如果点M(3,x)在第一象限,则x的取值范围是 .18.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 .19.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是 .第21页(共21页) 20.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是: .21.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 .22.如图所示,坐在象棋棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点 .23.点P(a,a﹣3)在第四象限,则a的取值范围是 .24.在平面直角坐标系中,点(﹣4,4)在第 象限.25.在平面直角坐标系中,点(2,﹣4)在第 象限.26.写出一个第二象限内的点的坐标:( , ).27.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 .第21页(共21页) 28.写出一个平面直角坐标系中第三象限内点的坐标:( , ).29.在平面直角坐标系中,点(1,2)位于第 象限.30.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= . 第21页(共21页) 第5章平面直角坐标系参考答案与试题解析 一、选择题(共16小题)1.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据点在第二象限的坐标特点即可解答.【解答】解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 2.在下列所给出坐标的点中,在第二象限的是( )A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】点的坐标.【分析】根据第二象限内点的坐标符号(﹣,+)进行判断即可.【解答】解:根据每个象限内点的坐标符号可得在第二象限内的点是(﹣2,3),故选:B.【点评】本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 3.在平面直角坐标系中,点M(﹣2,1)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.第21页(共21页) 【解答】解:点M(﹣2,1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 4.(2013•湛江)在平面直角坐标系中,点A(2,﹣3)在第( )象限.A.一B.二C.三D.四【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A(2,﹣3)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 5.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.第21页(共21页) 6.如图,点A(﹣2,1)到y轴的距离为( )A.﹣2B.1C.2D.【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选C.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键. 7.点P(4,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P在平面直角坐标系的第一象限.故选:A.【点评】本题考查了点的坐标,解答本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 8.若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【考点】点的坐标.【专题】新定义.【分析】根据新定义先求出f(2,﹣3),然后根据g的定义解答即可.第21页(共21页) 【解答】解:根据定义,f(2,﹣3)=(﹣2,﹣3),所以,g(f(2,﹣3))=g(﹣2,﹣3)=(﹣2,3).故选B.【点评】本题考查了点的坐标,读懂题目信息,掌握新定义的运算规则是解题的关键. 9.(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A.景仁宫(4,2))B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)【考点】坐标确定位置.【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【解答】解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),第21页(共21页) 可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选B【点评】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向. 10.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=( )A.(5,﹣9)B.(﹣9,﹣5)C.(5,9)D.(9,5)【考点】点的坐标.【专题】新定义.【分析】根据两种变换的规则,先计算f(5,﹣9)=(5,9),再计算g(5,9)即可.【解答】解:g(f(5,﹣9))=g(5,9)=(9,5).故选D.【点评】本题考查了点的坐标,理解新定义的变化规则是解题的关键. 11.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?( )A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.【解答】解:∵A点到x轴的距离为3,A点在第二象限,第21页(共21页) ∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.【点评】本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度,需熟练掌握并灵活运用. 12.(2013•淄博)如果m是任意实数,则点P(m﹣4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【解答】解:∵(m+1)﹣(m﹣4)=m+1﹣m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 13.(2014•菏泽)若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定【考点】点的坐标;完全平方公式.【分析】利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答.【解答】解:∵(x+y)2=x2+2xy+y2,∴原式可化为xy=﹣1,∴x、y异号,第21页(共21页) ∴点M(x,y)在第二象限或第四象限.故选:B.【点评】本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 14.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?( )A.一B.二C.三D.四【考点】点的坐标.【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选D.【点评】本题考查了点的坐标,观察图形,判断出a、b的取值范围是解题的关键. 15.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)B.(67,33)C.(100,33)D.(99,34)【考点】坐标确定位置;规律型:点的坐标.【专题】规律型.第21页(共21页) 【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键. 16.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【考点】坐标确定位置.第21页(共21页) 【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键. 二、填空题(共14小题)17.如果点M(3,x)在第一象限,则x的取值范围是 x>0 .【考点】点的坐标.【分析】根据第一象限内点的横坐标大于零,点的纵坐标大于零,可得答案.【解答】解:由点M(3,x)在第一象限,得x>0.故答案为:x>0.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 18.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 (﹣3,5) .【考点】点的坐标.【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),第21页(共21页) ∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 19.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是 (10,8) .【考点】坐标确定位置.【分析】根据A点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC的长,根据勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半. 第21页(共21页) 20.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是: (4,7) .【考点】坐标确定位置.【分析】根据图示,写出点B的位置的数对即可.【解答】解:如图所示,B点位置的数对是(4,7).故答案为:(4,7).【点评】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键. 21.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 (2,﹣1) .【考点】坐标确定位置.第21页(共21页) 【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答. 22.(2014•青海)如图所示,坐在象棋棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点 (﹣4,1) .【考点】坐标确定位置.【分析】根据“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),可知原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O.【解答】解:∵“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O,∴“兵”位于点(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置. 23.点P(a,a﹣3)在第四象限,则a的取值范围是 0<a<3 .【考点】点的坐标;解一元一次不等式组.第21页(共21页) 【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 24.在平面直角坐标系中,点(﹣4,4)在第 二 象限.【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣4,4)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 25.在平面直角坐标系中,点(2,﹣4)在第 四 象限.【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(2,﹣4)在第四象限.故答案为:四.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 26.(2013•南平)写出一个第二象限内的点的坐标:( ﹣1 , 1 ).【考点】点的坐标.第21页(共21页) 【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 27.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 (﹣2,3) .【考点】坐标确定位置.【专题】常规题型.【分析】以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).【点评】本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键. 28.写出一个平面直角坐标系中第三象限内点的坐标:( ﹣1 , ﹣1 ).【考点】点的坐标.【专题】开放型.第21页(共21页) 【分析】让横坐标、纵坐标为负数即可.【解答】解:在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).故答案为:(﹣1,﹣1)(答案不唯一).【点评】本题考查了平面直角坐标系中点的坐标特点,解题的关键是掌握在第三象限内点的横坐标、纵坐标为负. 29.在平面直角坐标系中,点(1,2)位于第 一 象限.【考点】点的坐标.【专题】压轴题.【分析】根据各象限的点的坐标特征解答.【解答】解:点(1,2)位于第一象限.故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 30.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= (3,2) .【考点】点的坐标.【专题】新定义.【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号. 第21页(共21页) 第21页(共21页)
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处